$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국 변산반도 암반생물막의 생물량과 군집구조의 계절 변화
Seasonal Variations of Epilithic Biofilm Biomass and Community Structure at Byeonsan Peninsula, Korea 원문보기

한국환경생태학회지 = Korean journal of environment and ecology, v.30 no.6, 2016년, pp.1009 - 1021  

김보연 (국립수산과학원 제주수산연구소) ,  박서경 ((주)연안관리기술연구소) ,  이정록 (원광대학교 생명과학부 및 환경과학연구소) ,  최한길 (원광대학교 생명과학부 및 환경과학연구소)

초록
AI-Helper 아이콘AI-Helper

암반생물막의 군집구조와 생물량의 시, 공간적인 변화를 확인하기 위하여, 파도에 대한 노출이 다른 고사포와 격포에서 11월부터 2011년 9월까지 격월로 암반조각을 채집하였다. 군집구조는 채집된 암반조각을 칫솔로 긁어 광학현미경하에서 미세조류의 분류군별 개체수를 계수하여 분석하였고, 생물량은 NDVI, VI, 엽록소 a 농도를 측정하여 확인하였다. 고사포와 격포의 조간대 암반생물막에서 가장 우점하는 분류군은 Aphanotece spp., Lyngbya spp.를 포함하는 남조류였으며, 환경스트레스가 적은 조간대 하부에서는 규조류의 출현율이 높게 나타났다. 암반생물막에서 우점하는 규조류는 Navicula spp., Achnanthes spp.와 Licmophora spp.로 확인되었다. 식생지수와 엽록소 a 농도는 격포에 비해 고사포 생물막에서 높게 나타났다. 식생지수인 NDVI와 VI는 고사포에서 각각 0.49-0.40(평균 0.43), 2.64-3.22(평균 2.90)였으며, 격포의 암반생물막은 NDVI와 VI가 각각 0.32-0.41(평균 0.38), 2.03-2.86(평균 2.48)으로 확인되었다. 엽록소 a의 농도는 고사포에서 $12.79-32.87{\mu}g/cm^2$(평균 $22.84{\mu}g/cm^2$)였고, 격포에서는 $11.14-18.25{\mu}g/cm^2$(평균 $15.48{\mu}g/cm^2$)로 식생지수와 마찬가지로 1월(겨울)에 최대, 3월(봄)에 최소인 계절 변화를 보였다. 엽록소 a 농도는 NDVI, VI와 양의 상관관계를 보여 비파괴적인 식생지수 측정방법이 파괴적인 엽록소 a 추출 방법을 대체할 수 있음을 알려준다. 결론적으로 암반생물막은 여름보다 겨울에, 조간대 상부보다 중부와 하부에서, 파도에 보호된 해안보다 노출된 해안에서 높은 값을 보였다.

Abstract AI-Helper 아이콘AI-Helper

The community structure and abundance of epilithic biofilm were bimonthly examined to know spatial and temporal patterns of biofilm biomass and taxonimical composition at the two study sites, Gosapo and Gyeokpo with different degrees of wave exposure levels from November 2010 to September 2011. Biom...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Epilithic biofilm biomass was examined using a combination of direct cell counts and indirect chlorophyll a extraction method. Furthermore, biofilm biomass was non-destructively quantified by spectral reflectance using the normalized difference vegetation index (NDVI) and a simple vegetation index (VI) in order to evaluate the possibility of using remote-sensing technique.
  • The aims of the current study were to examine the community structure and abundance of epilithic biofilms along shore gradients and to detect seasonal patterns of biofilm biomass and taxonimical composition at two study sites with different degrees of wave exposure. Epilithic biofilm biomass was examined using a combination of direct cell counts and indirect chlorophyll a extraction method.
  • To examine temporal-spatial variation in the chlorophyll a content and the correlations between vegetation indices (NDVI or VI) and chlorophyll a, a total of 48 rock chips (eight replicates on each shore level at two study sites) were measured for reflectance followed by chlorophyll a extraction. This was a necessary calibration step to be able to use the reflectance indices to trace seasonal and vertical changes in the epilithic microalgal biomass.

대상 데이터

  • 20℃). At each sampling date, a total of 66 rock chips, including 44 chips for chlorophyll a extraction and 18 chips for community structure analyses, were sampled.
  • Figure 4. Seasonal variations of relative abundance of the major taxonomic groups of three intertidal shore levels at the two study sites of Byeonsan Peninsula, Korea, from January to September 2011. Data showed as mean values of three replicates​​​​​​​

데이터처리

  • 0 software. A one-way ANOVA (analysis of variance) was used to test the difference in biofilm biomass between the two sites over the study period. For each a site, two-way ANOVA was used to determine the difference in biofilm biomass between the season and tidal levels.
  • A one-way ANOVA (analysis of variance) was used to test the difference in biofilm biomass between the two sites over the study period. For each a site, two-way ANOVA was used to determine the difference in biofilm biomass between the season and tidal levels. The significance of the differences between mean values was evaluated with the Tukey HSD test (Sokal and Rohlf, 1981).

이론/모형

  • The aims of the current study were to examine the community structure and abundance of epilithic biofilms along shore gradients and to detect seasonal patterns of biofilm biomass and taxonimical composition at two study sites with different degrees of wave exposure. Epilithic biofilm biomass was examined using a combination of direct cell counts and indirect chlorophyll a extraction method. Furthermore, biofilm biomass was non-destructively quantified by spectral reflectance using the normalized difference vegetation index (NDVI) and a simple vegetation index (VI) in order to evaluate the possibility of using remote-sensing technique.
  • Reflectance spectra were measured on eight rock chips at each shore level. Reflectance measurements were used to estimate epilithic biofilm biomass by calculating the normalized difference vegetation index (NDVI, Rouse et al., 1973) and vegetation index (VI, Jordan, 1969). The NDVI and VI were calculated as follows (Jordan, 1969; Rouse et al.
  • Rock chips with epilithic biofilms were collected bimonthly from the intertidal zone of Gosapo (35°39′N, 126°30′E) and Gyeokpo (35°38′N, 126°27′E), Byeonsan, Korea, from November 2010 to September 2011. The levels of wave exposure at the two study sites were measured using a dynamometer, which was made by the following protocol of Bell and Denny(1994). Relative levels of wave exposure, from zero (no movement) to 1 (full tie length), were calculated using the moving distance of the rubber indicator connected to the practice golf ball with a nylon cable tie.
  • For each a site, two-way ANOVA was used to determine the difference in biofilm biomass between the season and tidal levels. The significance of the differences between mean values was evaluated with the Tukey HSD test (Sokal and Rohlf, 1981). Cochran's test was used to verify homoscedasticity, and data transformations were applied when necessary.
본문요약 정보가 도움이 되었나요?

참고문헌 (53)

  1. Al-Thukair A.A., R.M.M. Abed and L. Mohamed (2007) Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar Poll Bull 54: 173-179. 

  2. Barille L., J.L., Mouget, V. Meleder, P. Rosa and B. Jesus (2011) Spectral response of benthic diatoms with different sediment backgrounds. Remote Sens Environ 115: 1034-1042. 

  3. Bell E.C. and M.W. Denny (1994) Quantifying “wave exposure”: a simple device for recording maximum velocity and results of its use at several field sites. J Exp Mar Biol Ecol 181: 9-29. 

  4. Boaventura D., L. Cancela, L.C. da Fonseca and S.J. Hawkins (2002) Analysis of competitive interactions between the limpets Petella depressa Pennants and Patella vulgate L. on the northern coast of Portugal. J Exp Mar Biol Ecol 271: 171-188. 

  5. Castenholz R.W. (1961) Effect of grazing on marine littoral diatom populations. Ecology 42: 783-794. 

  6. Castenholz R.W. (1963) An experimental study of the vertical distribution of littoral marine diatoms. Limnol Oceanogr 8: 450-462. 

  7. Chan B.K.K., W.K.S. Chan and G. Walker (2003) Patterns of biofilm succession on a sheltered rocky shore in Hong Kong. Biofouling 19: 371-380. 

  8. Choi C.H., S.W. Jung, S. M. Yun, S.H. Kim and J.G. Park (2013) Changes in phytoplankton communities and environmental factors in Saemangeum artificial lake, South Korea between 2006 and 2009. Korean J Environ Biol 31: 213-224. 

  9. Dye A.H. and D.R.A White (1991) Intertidal microalgal production and molluscan herbivory in relation to season and elevation on two rocky shores on the east coast of southern Africa. S Afr J Mar Sci 11: 483-489. 

  10. Farina J.M., J.C. Castilla and F.P. Ojeda (2003) The "idiosyncratic" effect of a "Sentinel" species on contaminated rocky intertidal communities. Ecol Appl 13: 1533-1552. 

  11. Hawkins S.J. and R.G. Hartnoll (1983) Grazing of intertidal algae by marine invertebrates. Oceanogr Mar Biol Annu Rev 21: 195-285. 

  12. Hill A.S. and S.J. Hawkins (1991) Seasonal and spatial variation of epilithic microalgal distribution and abundance and its ingestion by Patella vulgate on a moderately exposed rocky shore. J Mar Biol Assoc UK 71: 403-423. 

  13. Honeywill C., D.M. Paterson, S.E. Hagerthey (2002) Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. Eur J Phycol 37: 485-492. 

  14. Jackson A.C., A.J. Underwood, R.J. Murphy, G.A. Skilleter (2010) Latitudinal and environmental patterns in abundance and composition of epilithic microphytobenthos. Mar Ecol Prog Ser 417: 27-38. 

  15. Jenkins S.R. and R.G. Hartnoll (2001) Food supply, grazing activity and growth rate in the limpet Patella vulgate L.: a comparison between exposed and sheltered shores. J Exp Mar Biol Ecol 258: 123-139. 

  16. Jesus B., C.R. Mendes, V. Brotas and D.M. Paterson (2006) Effects of sediment type on microphytobenthos vertical distribution: Modelling the productive biomass and improving ground truth measurements. J Exp Mar Biol Ecol 332: 60-74. 

  17. Jesus B., J-L. Mouget and R.G. Perkins (2008) Detection of diatom xanthophyll cycle using spectral reflectance. J Phycol 44: 1349-1359. 

  18. Jones J.G. (1974) A method for observation and enumeration of epilithic algae directly on the surface of stones. Oecologia (Berlin) 16: 1-8. 

  19. Jordan C.F. (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50: 663-666. 

  20. Kim Y.G., J.W. Park, K.G. Jang and W. Yih (2009) Cyclic change of phytoplankton community in Mankyeong river estuary prior to the completion of the Saemankeum seawall. Ocean Polar Res 31: 63-70. 

  21. Kromkamp J., C. Barranguet and J. Peene (1998) Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar Ecol Prog Ser 162: 45-55. 

  22. Laba M., F. Tsai, D. Ogurcak, S. Smith and M.E. Richmond (2005) Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis. Photogramm. Eng Remote Sens 71: 603-611. 

  23. Lamontagne I., A. Cardinal and L. Fortier (1989) Environmental forcing versus endogenous control of photosynthesis in intertidal epilithic microalgae. Mar Ecol Prog Ser 51: 177-187. 

  24. Leigh E.G., R.T. Paine, J.F. Quinn and T.H. Suchanek (1987) Wave energy and intertidal productivity. Proc natn Acad Sci USA 84: 1314-1318. 

  25. Lock M.A. (1993) Attached microbial communities in rivers. In: Ford TA (ed) Aquatic microbiology. Blackwell Scientific Publications, Oxford, UK, pp 113-138. 

  26. Louchard E.M., R.P. Reid, F.C. Stephens, C.O. Davis, R.A. Leathers, T.V. Downes and R.A. Maffione (2002) Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt Express 10: 1573-1584. 

  27. MacLulich J.H. (1987) Variations in the density and variety of intertidal epilithic microflora. Mar Ecol Prog Ser 40: 285-293. 

  28. McQuaid C.D. and G.M. Branch (1984) Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass. Mar Ecol Prog Ser 19: 145-151. 

  29. Murphy R.J., T.J. Tolhurst, M.G. Chapman and A.J. Underwood (2004) Estimation of surface chlorophyll on an exposed mudflat using digital colour infrared (CIR) photography. Estuar Coast Shelf Sci 59: 625-638. 

  30. Murphy R.J., A.J. Underwood and M.H. Pinkerton (2006) Quantitative imaging to measure photosynthetic biomass on an intertidal rock-platform. Mar Ecol Prog Ser 312: 45-55. 

  31. Murphy R.J., A.J. Underwood, M.H. Pinkerton and P. Range (2005) Field spectrometry: new methods to investigate epilithic micro-algae on rocky shores. J Exp Mar Biol Ecol 325: 111-124. 

  32. Murphy R.J., A.J. Underwood, T.J. Tolhurst, M.G. Chapman (2008) Field-based remote-sensing for experimental intertidal ecology: Case studies using hyperspatial and hyperspectral data for New South Wales (Australia). Remote Sens Environ 112: 3353-3365. 

  33. Nagarkar S., G.A. Williams (1997) Comparative techniques to quantify cyanobacteria dominated epilithic biofilms on tropical rocky shores. Mar Ecol Prog Ser 154: 281-291. 

  34. Nagarkar S., G.A. Williams (1999) Spatial and temporal variation of cyanobacteria-dominated epilithic communities on a tropical shore in Hong Kong. Phycologia 38: 385-393. 

  35. Norton T.A., R.C. Thompson, J. Pope, C.J. Veltkamp, B. Banks, C.V. Howard and S.J. Hawkins (1998) Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat Microb Ecol 16: 199-204. 

  36. Ortega-Morales B.O., J.L. Santiago-Garcia and A. Lopez-Cortes (2005) Biomass and taxonomic richness of epilithic cyanobacteria in a tropical intertidal rocky habitat. Bot. Mar. 48: 116-121. 

  37. Perkins R.G., K. Oxborough, A.R.M. Hanlon, G.J.C. Underwood and N.R. Baker (2002) Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Mar Ecol Prog Ser 228: 47-56. 

  38. Ray S. (2006) Cyanobacteria. New Age International Publishers. New Delhi, India, pp. 1-178. 

  39. Rouse J.W., R.H. Haas, J.A. Schell, D.W. Deering (1973) Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium. NASA SP-351, Washington, pp. 309-317. 

  40. Ruban A.V. and R. Horton (1995) Regulation of nonphotochemical quenching of chlorophyll fluorescence in plants. Aust J Plant Physiol 22: 221-230. 

  41. Sabater S. and J.R. Roca (1990) Some factors affecting distribution of diatom assemblages in Pyrenean Springs. Freshwater Biol 24: 493-507. 

  42. Serodio J., P. Cartaxana, H. Coelho and S. Vieira (2009) Effects of chlorophyll fluorescence on the estimation of microphytobenthos biomass using spectral reflectance indices. Remote Sens Environ 113: 1760-1768. 

  43. Shim J.H. (1994) Illustrated Encyclopedia of Fauna and Flora of Korea, Marine Phytoplankton, vol 34. Ministry of Education, Seoul, Korea, pp. 1-487. 

  44. Sokal R.R. and F.J. Rohlf (1981) Biometry (2nd edn). New York: WH Feeman and Company 668. 

  45. Stephens F.C., E.M. Louchard, R.P. Reid and R.A. Maffione (2003) Effects of microalgal communities on reflectance spectra of carbonate sediments in subtidal optically shallow marine environments. Limnol Oceanogr 48: 535-546. 

  46. Thompson R.C., T.A. Norton and S.J. Hawkins (1998) The influence of epilithic microbial films on the settlement of Semibalanus balanoides cyprids-a comparison between laboratory and field experiments. Hydrobiologia 375/376: 203-216. 

  47. Thompson R.C., T.A. Norton and S.J. Hawkins (2004) Physical stress and biological control regulate the producer-consumer balance in intertidal biofilms. Ecology 85: 1372-1382. 

  48. Thompson R.C., P.S. Moschella, S.P. Jenkins, T.A. Norton and S.J. Hawkins (2005) Differences in photosynthetic marine biofilms between sheltered and moderately exposed rocky shores. Mar Ecol Prog Ser 296: 53-63. 

  49. Thompson R.C., M.L. Tobin, S.J. Hawkins and T.A. Norton (1999) Problems in extraction and spectrophotometric determination of chlorophyll from epilithic microbial biofilms: towards a standard method. J Mar Biol Assoc 79: 551-558. 

  50. Underwood A.J. (1984a) Microalgal food and the growth of the intertidal gastropods Nerita atramentosa Reeve and Bembicium nanum (Lamarck) at four heights on a shore. J Exp Mar Biol Ecol 79: 277-291. 

  51. Underwood A.J. (1984b) The vertical-distribution and seasonal abundance of intertidal microalgae on a rocky shore in New South Wales. J Exp Mar Biol Ecol 78: 199-220. 

  52. Yallop M.L., B.D. Winder, D.M. Paterson and L.J. Stal (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39: 565-582. 

  53. Zarco-Tejada P.J., J.C. Pushnik, S. Dobrowski and S.L. Ustin (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens Environ 84: 283-294. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로