$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

그래핀-세라믹 구조세라믹스 동향 원문보기

세라미스트 = Ceramist, v.19 no.1, 2016년, pp.33 - 44  

김종영 (한국세라믹기술원) ,  이성민 (한국세라믹기술원)

초록이 없습니다.

질의응답

핵심어 질문 논문에서 추출한 답변
CNT와 비교하여 그래핀 복합체를 사용하는 경우 경제적 측면의 장점은? 반면에 CNT는 이를 처리하기 위해 일반적으로 표면개질2)을 요구한다. 또한 상대적으로 생산이 쉽고 저렴하며 CNT에 비해 인체에 덜 유해하다.22) 이러한 장점과 우수한 특성의 관점에서, 강화된 그래핀-세라믹 복합체는 큰 가능성을 가진다.
단일세라믹의 경우 사용이 제한되는 이유는? 단일(monolithic) 세라믹은 높은 강성(stiffness), 강도, 고온안정성과 같은 매력적인 특성을 가지고 있으며 그 특성들은 생물의학, 전자, 자동차, 산업, 국방 및 우주 분야에 유용하게 사용되어지고 있다. 그러나 단일세라믹은 파괴인성이 취약한 경향이 있고, 따라서 기계적으로 신뢰성이 부족하며 전기전도성이 부족한 세라믹스는 사용이 제한된다. 이러한 특성의 개선을 위하여 섬유-세라믹복합체1)와 나노카본(그래핀, 탄소나노튜브)를 복합화한 구조세라믹스2)가개발되고 있다.
단일세라믹의 특성은? 단일(monolithic) 세라믹은 높은 강성(stiffness), 강도, 고온안정성과 같은 매력적인 특성을 가지고 있으며 그 특성들은 생물의학, 전자, 자동차, 산업, 국방 및 우주 분야에 유용하게 사용되어지고 있다. 그러나 단일세라믹은 파괴인성이 취약한 경향이 있고, 따라서 기계적으로 신뢰성이 부족하며 전기전도성이 부족한 세라믹스는 사용이 제한된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (81)

  1. A. R. Bunsell, Fundamentals of Fibre Reinforced Composite Materials; pp. 398, CRC Press, London, 2005. 

  2. J. Cho, A. R. Boccaccini, and M. S. P. Shaffer, "Ceramic Matrix Composites Containing Carbon Nanotubes," J. Mater. Sci., 44 [8] 1934-51 (2009). 

  3. G. L. Hwang and K. C. Hwang, "Carbon Nanotube Reinforced Ceramics," J. Mater. Chem., 11 [6] 1722-25 (2001). 

  4. G. D. Zhan and A. K. Mukherjee, "Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties," Int. J. Appl. Ceram. Techol., 1 [2] 161-71 (2004). 

  5. J. Cho, F. Inam, M. J. Reece, Z. Chlup, I. Dlouhy, M. S. P. Shaffer, and A. R. Boccaccini, "Carbon Nanotubes: Do They Toughen Brittle Matrices?," J. Mater. Sci., 46 [14] 4770-79 (2011). 

  6. J. W. Ning, J. J. Zhang, Y. B. Pan, and J. K. Guo, "Fabrication and Mechanical Properties of $SiO_2$ Matrix Composites Reinforced by Carbon Nanotube," Mater. Sci. Eng. A: Struct., 357 [1-2] 392-96 (2003). 

  7. R. Sivakumar, S. Q. Guo, T. Nishimura, and Y. Kagawa, "Thermal Conductivity in Multi-Wall Carbon Nanotube/Silica-Based Nanocomposites," Scr. Mater., 56 [4] 265-68 (2007). 

  8. S. Q. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, "Electrical Properties of Silica-Based Nanocomposites with Multiwall Carbon Nanotubes," J. Am. Ceram. Soc., 90 [5] 1667-70 (2007). 

  9. F. Inam, H. X. Yan, D. D. Jayaseelan, T. Peijs, and M. J. Reece, "Electrically Conductive Alumina-Carbon Nanocomposites Prepared by Spark Plasma Sintering," J. Eur. Ceram. Soc., 30 [2] 153-57 (2010). 

  10. J. P. Fan, D. M. Zhuang, D. Q. Zhao, G. Zhang, M. S. Wu, F. Wei, and Z. J. Fan, "Toughening and Reinforcing Alumina Matrix Composite with Single-Wall Carbon Nanotubes," Appl. Phys. Lett., 89 [12] 121910 (2006). 

  11. G. D. Zhan, J. D. Kuntz, J. E. Garay, and A. K. Mukherjee, "Electrical Properties of Nanoceramics Reinforced with Ropes of Single-Walled Carbon Nanotubes," Appl. Phys. Lett., 83 [6] 1228-30 (2003). 

  12. A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 [3] 183-91 (2007). 

  13. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321 [5887] 385-88 (2008). 

  14. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Lett., 8 [3] 902-7 (2008). 

  15. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-Based Composite Materials," Nature, 442 [7100] 282-86 (2006). 

  16. J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, F. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, "Electromagnetic Interference Shielding of Graphene/Epoxy Composites," Carbon, 47 [3] 922-25 (2009). 

  17. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, "A New Compounding Method for Exfoliated Graphite-Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold," Compos. A: Appl. S, 38 [7] 1675-82 (2007). 

  18. A. Yasmin, J. J. Luo, and I. M. Daniel, "Processing of Expanded Graphite Reinforced Polymer Nanocomposites," Compos. Sci. Technol., 66 [9] 1182-89 (2006). 

  19. L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011). 

  20. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff," Graphene-Silica Composite Thin Films as Transparent Conductors," Nano Lett., 7 [7] 1888-92 (2007). 

  21. L. J. Wang, J. L. Li, J. Q. Li, S. K. Sun, F. Chen, L. D. Chen, and W. Jiang," Preparation and Electrical Properties of Graphene Nanosheet/ $Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010). 

  22. C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, "A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks," Crit. Rev. Toxicol., 36 [3] 189-217 (2006). 

  23. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, 306 666-69 (2004). 

  24. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-Dimensional Atomic Crystals," Proc. Natl. Acad. Sci. U.S.A., 102 10451-53 (2005). 

  25. B. Jayasena and S. Subbiah, "A Novel Mechanical Cleavage Method for Synthesizing Few-Layer Graphenes," Nanoscale Res. Lett., 6 [95] 48 (2011). 

  26. J. Chen, M. Duan, and G. Chen, "Continuous Mechanical Exfoliation of Graphene Sheets via Three-Roll Mill," J. Mater. Chem., 22 19625 (2012). 

  27. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite," Nat. Nanotechnol., 3 563-68 (2008). 

  28. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, "Liquid Phase Production of Graphene by Exfoliation of Graphite," J. Am. Chem. Soc., 131 3611-20 (2009). 

  29. U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, "High-Concentration Solvent Exfoliation of Graphene," Small, 6 864-71 (2010). 

  30. L. Lin, X. Zheng, S. Zhang, and D. A. Allwood, "Surface Energy Engineering in the Solvothermal Deoxidation of Graphene Oxide," Adv. Mater.Interfaces, 1 1300078 (2014). 

  31. A. Ciesielski and P. Samori, "Graphene via Sonication Assisted Liquid-Phase Exfoliation," Chem. Soc. Rev., 43 381-98 (2014). 

  32. G. Cravotto and P. Cintas, "Sonication-Assisted Fabrication and Post-Synthetic Modifications of Graphene-Like Materials," Chem. Eur. J., 16 5246-59 (2010). 

  33. C. Knieke, A. Berger, M. Voigt, R. N. K. Taylor, J. R ohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 3196-204 (2010). 

  34. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling," J. Mater. Chem., 20 5817 (2010). 

  35. I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. W. Chang, L. Dai, and J. B. Baek, "Edge-Carboxylated Graphene Nanosheets via Ball Milling," Proc. Natl. Acad. Sci. U. S. A, 109 5588-93 (2012). 

  36. C. Damm, T. J. Nacken, and W. Peukert, "Quantitative Evaluation of Delamination of Graphite by Wet Media Milling," Carbon, 81 284-94 (2015). 

  37. R. Aparna, N. Sivakumar, A. Balakrishnan, A. Sreekumar Nair, S. V. Nair, and K. R. V. Subramanian, "An Effective Route to Produce Few-Layer Graphene Using Combinatorial Ball Milling and Strong Aqueous Exfoliants," J. Renewable Sustainable Energy, 5 033123 (2013). 

  38. A. E. Del Rio-Castillo, C. Merino, E. Diez-Barra, and E. V'azquez, "Selective Suspension of Single Layer Graphene Mechanochemically Exfoliated from Carbon Nanofibres," Nano Res., 7 963-72 (2014). 

  39. Z. Shen, J. Li, M. Yi, X. Zhang, and S. Ma, "Preparation of Graphene by Jet Cavitation," Nanotechnology, 22 365306 (2011). 

  40. M. Yi, Z. Shen, W. Zhang, J. Zhu, L. Liu, S. Liang, X. Zhang, and S. Ma, "Hydrodynamics-Assisted Scalable Production of Boron Nitride Nanosheets and their Application in Improving Oxygen-Atom Erosion Resistance of Polymeric Composites," Nanoscale, 5 10660-67(2013). 

  41. K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J. N. Coleman, "Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids," Nat. Mater., 13 624-30 (2014). 

  42. L. Liu, Z. Shen, M. Yi, X. Zhang, and S. Ma, "A Green, Rapid and Size-Controlled Production of High-Quality Graphene Sheets by Hydrodynamic Forces," RSC Adv., 4 36464 (2014). 

  43. M. Yi and Z. Shen, "Kitchen Blender for Producing High-Quality Few-Layer Graphene," Carbon, 78 622-26 (2014). 

  44. E. Varrla, K. R. Paton, C. Backes, A. Harvey, R. J. Smith, J. McCauley, and J. N. Coleman, "Turbulence-Assisted Shear Exfoliation of Graphene Using Household Detergent and a Kitchen Blender," Nanoscale, 6 11810-19 (2014). 

  45. Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Adv. Mater., 22 [35] 3906-24 (2010). 

  46. S. Park and R. S. Ruoff, "Chemical Methods for the Production of Graphenes," Nat. Nanotechnol., 4 [4] 217-24 (2009). 

  47. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, "Graphene Based Materials: Past, Present and Future," Prog. Mater. Sci., 56 [8] 1178-271 (2011). 

  48. K. Wang, Y. F. Wang, Z. J. Fan, J. Yan, and T. Wei, "Preparation of Graphene Nanosheet/ Alumina Composites by Spark Plasma Sintering," Mater. Res. Bull., 46 [2] 315-18 (2011). 

  49. L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011). 

  50. Y. C. Fan,L. J. Wang, J. L. Li, J. Q. Li, S. K. Sun, F. Chen, L. D. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/ $Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010). 

  51. O. Tapaszto, L. Tapaszto, M. Marko, F. Kern, R. Gadow, and C. Balazsi, "Dispersion Patterns of Graphene and Carbon Nanotubes in Ceramic Matrix Composites," Chem. Phys. Lett., 511 [4-6] 340-43 (2011). 

  52. P. Kun, O. Tapaszto, F. Weber, and C. Balazsi, "Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites," Ceram. Int., 38 [1] 211-16 (2012). 

  53. T. He, J. L. Li, L. J. Wang, J. J. Zhu, and W. Jiang, "Preparation and Consolidation of Alumina/Graphene Composite Powders," Mater. Trans., 50 [4] 749-51 (2009). 

  54. J. Echeberria, N. Rodriguez, J. Vleugels, K. Vanmeensel, A. Reyes- Rojas, A. Garcia-Reyes, C. Dominguez-Rios, A. Aguilar-Elguezabal and M. H. Bocanegra-Bernal, "Hard and Tough Carbon Nanotube-Reinforced Zirconia-Toughened Alumina Composites Prepared by Spark Plasma Sintering," Carbon, 50 [2] 706-17 (2012). 

  55. M. Estili, and A. Kawasaki, "Engineering Strong Intergraphene Shear Resistance in Multi-walled Carbon Nanotubes and Dramatic Tensile Improvements," Adv. Mater., 22 [5] 607 (2010). 

  56. Y. Yang, Y. Wang, W. Tian, Z. Q. Wang, Y. Zhao, L. Wang, and H. M. Bian, "Reinforcing and Toughening Alumina/Titania Ceramic Composites with Nano-Dopants from Nanostructured Composite Powders," Mat. Sci. Eng. A: Struct, 508 [1-2] 161-66 (2009). 

  57. J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, M. J. Reece, and V. Puchy, "Hot Pressed and Spark Plasma Sintered Zirconia/Carbon Nanofiber Composites," J. Eur. Ceram. Soc., 29 [15] 3177-84 (2009). 

  58. C. Balazsi, Z. Shen, Z. Konya, Z. Kasztovszky, F. Weber, Z. Vertesy, L. P. Biro, I. Kiricsi, and P. Arato, "Processing of Carbon Nanotube Reinforced Silicon Nitride Composites by Spark Plasma Sintering," Compos. Sci. Technol., 65 [5] 727-33 (2005). 

  59. S. Q. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, "Electrical Properties of Silica-Based Nanocomposites with Multiwall Carbon Nanotubes," J. Am. Ceram. Soc., 90 [5] 1667-70 (2007). 

  60. A. R. Boccaccini, B. J. C. Thomas, G. Brusatin and P. Colombo, "Mechanical and Electrical Properties of Hot-Pressed Borosilicate Glass Matrix Composites Containing Multi-Wall Carbon Nanotubes," J. Mater. Sci., 42 [6] 2030-36 (2007). 

  61. J. A. Lewis, "Colloidal Processing of Ceramics," J. Am. Ceram. Soc., 83 [10] 2341-59 (2000). 

  62. C. Zheng, M. Feng, X. Zhen, J. Huang, and H. B. Zhan, "Materials Investigation of Multi-Walled Carbon Nanotubes Doped Silica Gel Glass Composites," J. Non- Cryst. Solids, 354 [12-13] 1327-30 (2008). 

  63. H. B. Zhan, W. Z. Chen, M. Q. Wang, Zhengchan, and C. L. Zou, "Optical Limiting Effects of Multi-Walled Carbon Nanotubes Suspension and Silica Xerogel Composite," Chem. Phys. Lett., 382 [3-4] 313-17 (2003). 

  64. Y. Zeng, Y. Zhou, L. Kong, T. Zhou, and G. Shi, "A Novel Composite of $SiO_2$ -Coated Graphene Oxide and Molecularly Imprinted Polymers for Electrochemical Sensing Dopamine," Biosens. Bioelectr., 45 25-33 (2013). 

  65. W. Y. Cheng, C. C. Wang, and S. Y. Lu, "Graphene Aerogels as a Highly Efficient Counter Electrode Material for Dye-Sensitized Solar Cells," Carbon, 54 291-99 (2013). 

  66. J. L. Yang, J. J. Wang, D. N. Wang, X. F. Li, D. S. Geng, G. X. Liang, M. Gauthier, R. Y. Li, and X. L. Sun, "3D Porous $LiFePO_4$ /Graphene Hybrid Cathodes with Enhanced Performance for Li-Ion Batteries," J. Power Sour., 208 340-44 (2012). 

  67. R. G. Duan and A. K. Mukherjee, "Synthesis of SiCNO Nanowires through Heat-Treatment of Polymer-Functionalized Single-Walled Carbon Nanotubes," Adv. Mater., 16 [13] 1106 (2004). 

  68. L. N. An, W. X. Xu, S. Rajagopalan, C. M. Wang, H. Wang, Y. Fan, L. G. Zhang, D. P. Jiang, J. Kapat, L. Chow, B. H. Guo, J. Liang, and R. Vaidyanathan, "Carbon-Nanotube-Reinforced Polymer-Derived Ceramic Composites," Adv. Mater., 16 [22] 2036 (2004). 

  69. J. H. Lehman, K. E. Hurst, G. Singh, E. Mansfield, J. D. Perkins, and C. L. Cromer, "Core-Shell Composite of SiCN and Multiwalled Carbon Nanotubes from Toluene Dispersion," J. Mater. Sci., 45 [15] 4251-54 (2010). 

  70. F. Ji, Y. L. Li, J. M. Feng, D. Su, Y. Y. Wen, Y. Feng, and F. Hou, "Electrochemical Performance of Graphene Nanosheets and Ceramic Composites as Anodes for Lithium Batteries," J. Mater. Chem., 19 [47] 9063-67 (2009). 

  71. J. Sun and L. Gao, "Development of a Dispersion Process for Carbon Nanotubes in Ceramic Matrix by Heterocoagulation," Carbon, 41 [5] 1063-68 (2003). 

  72. B. Milsom, G. Viola, Z. P. Gao, F. Inam, T. Peijs, and M. J. Reece, "The Effect of Carbon Nanotubes on the Sintering Behaviour of Zirconia," J. Eur. Ceram. Soc., 32 [16] 4149-56 (2012). 

  73. B. Lawn, "Indentation Fracture", in 'Fracture of brittile solids-second edition', Press Syndicate of the University of Cambridge, Cambridge, 1993. 

  74. X. T. Wang, N. P. Padture, and H. Tanaka, "Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites," Nat. Mater., 3 [8] 539-44 (2004). 

  75. G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 [3] 673-80 (2007). 

  76. B. W. Sheldon and W. A. Curtin, "Nanoceramic Composites: Tough to Test," Nat. Mater., 3 [8] 505-6 (2004). 

  77. L. Kvetkova, A. Duszova, P. Hvizdos, J. Dusza, P. Kun, and C. Balazsi, "Fracture Toughness and Toughening Mechanisms in Graphene Platelet Reinforced $Si_3N_4$ Composites," Scr. Mater., 66 [10] 793-96 (2012). 

  78. J. Liu, H. X. Yan, M. J. Reece, and K. Jiang, "Toughening of Zirconia/Alumina Composites by the Addition of Graphene Platelets," J. Eur. Ceram Soc., 32 [16] 4185-93 (2012). 

  79. Y. C. Fan, W. Jiang, and A. Kawasaki, "Highly Conductive Few-Layer Graphene/ $Al_2O_3$ Nanocomposites with Tunable Charge Carrier Type," Adv. Funct. Mater., 22 [18] 3882-89 (2012). 

  80. S. Rul, F. Lefevre-schlick, E. Capria, C. Laurent, and A. Peigney, "Percolation of Single-Walled Carbon Nanotubes in Ceramic Matrix Nanocomposites," Acta Mater., 52 [4] 1061-67 (2004). 

  81. C. Ramirez, L. Garzon, P. Miranzo, M. I. Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/Silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 [12] 3873-80 (2011). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로