$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성
Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 원문보기

생명과학회지 = Journal of life science, v.26 no.5 = no.193, 2016년, pp.603 - 607  

최혜정 (창원대학교 생물학화학융합학부) ,  황민정 (창원대학교 생물학화학융합학부) ,  김동완 (창원대학교 생명보건학부) ,  주우홍 (창원대학교 생물학화학융합학부)

초록
AI-Helper 아이콘AI-Helper

유기용매 내성 세균 Pseudomonas sp. BCNU 106으로부터 생산된 리파아제 조효소액은 pH 4-10의 넓은 범위의 pH와 37℃에서 매우 안정적이었다. BCNU 106의 리파아제 안정성은 25% xylene, hexane, octane, toluene, chloroform 및 dodecane에서 증가하였으며, 상업적인 고정화 효소와 비교해도 우수한 안정성을 보이고 있다. 그리고 Cu2+, Hg2+, Zn2+ 및 Mn2+ 존재 하에서 110% 이상의 상대활성을 나타낸 반면에, Fe2+에서는 효소활성이 억제되었다. 게다가 계면활성제인 tween 80과 triton X-100 및 SDS에서도 높은 안정성을 유지됨이 확인되었다. 본 연구에서 유기용매 내성 Pseudomonas sp. BCNU 106의 리파아제는 고정화 효소에 못지않은 효소 활성 및 안정성을 유지함이 밝혀져 다양한 산업공정에서 잠재적인 생물촉매로 적용될 수 있는 가능성을 확인할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (12...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • BCNU 106 균주는 다양한 유기용매에 대해 내성이 있으며, 특히 hexane, toluene 및 xylene에서는 거의 포화농도에서도 내성을 가지는 우수한 유기용매 내성 균주임을 보고한 바 있다[6]. 따라서 BCNU 106 의 조효소액을 사용하여 다양한 범위의 pH와 온도에서 효소 활성과 유기용매 및 금속이온 등의 존재하에서 효소 안정성을 상업적으로 시판되는 Novozym 435와 비교․검토함으로써 고정화 없이도 이상계에서 이용 가능성을 조사하여 보고하고자 한다.
  • 현재 세균 리파아제의 상업적 이용은 효소 정제로 인한 높은 생산 단가로 인해 아직 초기단계에 머물러 있으므로 새로운 리파아제 생산 세균 탐색 및 배양 조건에 대한 검토는 꾸준히 연구되어야 할 분야이다. 본 연구에서 BCNU 106이 생산하는 리파아제 조효소액을 이용하여 다양한 조건에서 Novozym 435와 비교한 결과, 고정화 효소에 못지않은 효소 활성 및 안정성을 유지함으로써 효소의 정제 없이도 리파아제 사용 공정에 적용할 수 있는 가능성을 본 논문에서 제시하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. Basheer, S. M., Chellappan, S., Beena, P. S., Sukumaran, R. K., Elyas, K. K. and Chandrasekaran, M. 2011. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. N. Biotechnol. 28, 627-638. 

  2. Ben Bacha, A., Moubayed, N. M. and Al­Assaf, A. 2015. An organic solvent stable lipase from a newly isolated Staphylococcus aureus ALA1 strain with potential for use as an industrial biocatalyst. Biotechnol. Appl. Biochem. doi:10.1002/bab.1381. 

  3. Chiou, S. H. and Wu, W. T. 2004. Immobilization of Candida rugose lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25, 197-204. 

  4. Choi, H. J., Hwang, M. J., Seo, J. Y. and Joo, W. H. 2013. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154. J. Life Sci. 23, 1246-1251. 

  5. Choi, H. J., Kwon, G. S. and Joo, W. H. 2015. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 171. J. Life Sci. 25, 345-348. 

  6. Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. 

  7. Dahiya, P., Arora, P., Chaudhury, A., Chand, S. and Dilbaghi, N. 2010. Characterization of an extracellular alkaline lipase from Pseudomonas mendocina M-37. J. Basic Microbiol. 50, 420-426. 

  8. Fernandez-Lafuente, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal., B Enzym. 62, 197-212. 

  9. Gilbert, E. J. 1993. Pseudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb. Technol. 15, 634-645. 

  10. Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. 

  11. Jaeger, K. E. and Reetz, M. T. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396-403. 

  12. Jain, D. and Mishra, S. 2015. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. J. Mol. Catal., B Enzym. 117, 21-30. 

  13. Ji, Q., Xiao, S., He, B. and Liu, X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LK1 and its application of biodiesel production. J. Mol. Catal., B Enzym. 66, 264-269. 

  14. Jose, C., Austic, G. B., Bonetto, R. D., Burton, R. M. and Briand, L. E. 2013. Investigation of the stability of Novozym® 435 in the production of biodiesel. Catal. Today 213, 73-80. 

  15. Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasudo, N. and Ishikawa, H. 2000. Purification and characterization of organic solvent tolerant lipase from organic solvent tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89, 451-457. 

  16. Rodrigues, R. C. and Fernandez-Lafuente, R. 2010. Lipase from Rhizomucor meihei as an industrial biocatalyst in chemical process. J. Mol. Catal., B Enzym. 654, 1-22. 

  17. Romdhane, I. B., Fendri, A, Gargouri, Y., Gargouri, A. and Belghith, H. 2010. A novel ther-moactive and alkaline lipase from Talaromyces thermophilus fungus for use inlaundry detergents. Biochem. Eng. J. 53, 112-120. 

  18. Samaei-Nouroozi, A., Rezaei, S., Khoshnevis, N., Doosti, M., Hajihoseini, R., Khoshayand, M. R. and Faramarzi, M. A. 2015. Medium-based optimization of an organic solvent-tol erant extracellular lipase from the isolated halophilic Alkalibacillus salilacus. Extremophiles 19, 933-947. 

  19. Sharma, A. K., Tiwari, R. P. and Hoondal, G. S. 2001. Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp. AG-8. J. Basic Microbiol. 41, 363-366. 

  20. Singh, A. K. and Mukhopadhyay, M. 2012. Overview of fungal lipase: a review. Appl. Biochem. Biotechnol. 166, 486-520. 

  21. Tanaka, D., Yoneda, S., Yamashiro, Y., Sakatoku, A., Kayashima, T., Yamakawa, K. and Nakamura, S. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168, 327-338. 

  22. Yele, Y. U. and Desai, K. 2015. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; Optimization of media and production conditions using statistical methods. Appl. Biochem. Biotechnol. 175, 855-869. 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로