$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물체에 감염성 질병을 유발하는 바이로이드 검출 및 진단 방법
The Detection and Diagnosis Methods of Infectious Viroids caused Plant Diseases 원문보기

생명과학회지 = Journal of life science, v.26 no.5 = no.193, 2016년, pp.620 - 631  

이세희 (충북대학교 자연과학대학 미생물학과) ,  김양훈 (충북대학교 자연과학대학 미생물학과) ,  안지영 (충북대학교 자연과학대학 미생물학과)

초록
AI-Helper 아이콘AI-Helper

바이로이드는 매우 작은 RNA 분자로 구성되어 있으며, 외피 단백질이 없고 오로지 식물에만 감염되어 질병을 유발한다. 바이로이드 감염 질병을 예방하거나 진단하는 것은 상당히 어려운 일이며, 이는 병징이 초기에는 발견되지 않고 수확기에 접어들어서 발견되기 때문이다. 한편, 혈청학적인 방법은 식물 병원체를 검출하기 위해 주로 사용되었으나 바이로이드는 핵산인 RNA로만 구성되어 있기 때문에 이 방법으로 검출할 수가 없다. 때문에 바이로이드를 검출하기 위해 주로 사용되는 방법은 분자 생물학적인 방법으로, 초기에는 바이로이드의 분자적인 크기와 구조적 특징을 이용한 겔 전기 영동 방법이 주로 사용되었다. 그 후에는 역전사 반응과 중합효소 연쇄반응을 접목시킨 역전사 중합효소 연쇄반응(RT-PCR) 방법이 활용되었고, 그에 대한 효율적인 결과 확인을 위해 형광 물질을 도입한 실시간 역전사 중합효소 연쇄반응(Real-time RT-PCR)이 도입되었다. 그러나 그들은 온도를 변화시키기 위한 값비싼 기기와 전문적인 인력이 필요함으로 현장에서는 활용되기가 어렵다. 최근 개발된 고리 기반의 등온 증폭법(Loop-mediated isothermal amplification)의 경우, 온도의 변화가 필요 없어 비싼 온도 조절 기기가 필요하지 않다. 또한 매우 높은 증폭 효율을 지니며 반응 시간이 짧은 등의 여러 장점을 지니고 있기에 최근 현장 진단용 기술에 도입되고 있다. 이러한 배경으로, 이 총설에서는 바이로이드 유발 질병에 대하여 요약하고 그에 대한 검출 및 진단 방법에 대한 연구 동향에 대하여 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

Viroids are about 250-400 base pair of short single strand RNA fragments have been associated with economically important plant diseases. Due to the lack of protein expression capacity associated with replication, it is very difficult to diagnosis viroid diseases in serological methods. For detectin...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이러한 배경으로, 이 총설에서는 개괄적인 바이로이드와 그와 관련된 질병 및 병징에 대하여 살펴본 후, 기존부터 최신까지 사용되고 있는 검출.진단 방법과 관련된 연구동향을 정리하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (82)

  1. Adkar-Purushothama, C. R., Nagaraja, H., Sreenivasa, M. Y. and Sano, T. 2013. First Report of Coleus blumei viroid Infecting Coleus in India. Plant Dis. 97, 149. 

  2. Ahn, Y. C., Cho, M. H., Yoon, I. K., Jung, D. H., Lee, E. Y., Kim, J. H. and Jang, W. C. 2010. Detection of Salmonella Using the Loop Mediated Isothermal Amplification and Real-time PCR. J. Kor. Chem. Soc. 54, 215-221. 

  3. Boonham, N., Perez, L. G., Mendez, M. S., Peralta, E. L., Blockley, A., Walsh, K., Barker, I. and Mumford, R. A. 2004. Development of a real-time RT-PCR assay for the detection of potato spindle tuber viroid. J. Virol. Methods 116, 139-146. 

  4. Boubourakas, I. N., Fukuta, S. and Kyriakopoulou, P. E. 2009. Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 160, 63-68. 

  5. Budziszewska, M., Wieczorek, P. and Obrepalska-Steplowska, A. 2016. One-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of tomato torrado virus. Arch. Virol. 161, 1359-1364. 

  6. Bustin, S. A., Benes, V., Nolan, T. and Pfaffl, M. W. 2005. Quantitative real-time RT-PCR--a perspective. J. Mol. Endocrinol. 34, 597-601. 

  7. Bustin, S. A. and Mueller, R. 2005. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. (Lond). 109, 365-379. 

  8. Choi, J. J., Cho, M., Oh, M., Kim, H., Kil, M. S. and Park, H. 2010. PNA-mediated Real-Time PCR Clamping for Detection of EGFR Mutations. Bull. Kor. Chem. Soc. 31, 3525-3529. 

  9. Collmer, C. W., Hadidi, A. and Kaper, J. M. 1985. Nucleotide sequence of the satellite of peanut stunt virus reveals structural homologies with viroids and certain nuclear and mitochondrial introns. Proc. Natl. Acad. Sci. USA 82, 3110-3114. 

  10. De La Torre A, R., Téliz Ortiz, D., Pallás, V. and Sánchez Navarro, J. A. 2009. First report of avocado sunblotch viroid in avocado from Michoacán, México. Plant Dis. 93, 202. 

  11. Desvignes, J. C. 1999. Pear blister canker viroid: host range and improved bioassay with two new pear indicators, fieud 37 and fieud 110. Plant Dis. 83, 419-422. 

  12. Diener, T. O. 1989. Circular RNAs: relics of precellular evolution? Proc. Natl. Acad. Sci. USA 86, 9370-9374. 

  13. Elleuch, A., Marrakchi, M., Fakhfakh, H., Levesque, D., Bessais, N. and Perreault, J. P. 2003. Molecular Variability of Citrus Exocortis Viroid in a Single Naturally Infected Citrus Tree. Plant Protect. Sci. 39, 139-145. 

  14. Fadda, Z., Daros, J. A., Fagoaga, C., Flores, R. and Duran-Vila, N. 2003. Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J. Virol. 77, 6528-6532. 

  15. Fawcett, H. S. and Klotz, L. J. Exocortis on trifoliate orange. 1948. http://ucce.ucdavis.edu/files/repositoryfiles/ca210p13-71287.pdf. 

  16. Fischbach, J., Xander, N. C., Frohme, M. and Glökler, J. F. 2015. Shining a light on LAMP assays—A comparison of LAMP visualization methods including the novel use of berberine. BioTechniques 58, 189. 

  17. Flores, R., Hernandez, C., Llacer, G. and Desvignes, J. C. 1991. Identification of a new viroid as the putative causal agent of pear blister canker disease. J. Gen. Virol. 72,1199-1204. 

  18. Fonseca, M. E., Marcellino, L. H. and Gander, E. 1996. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes. J. Virol. Methods 57, 203-207. 

  19. Graca, J. V. da. and van Lelyveld, L. J. Peroxidase and indole3-acetic acid oxidase activities and isoenzymes in the mature bark of sunblotch-infected avocado (Persea americana). J. Phytopathol. 92, 143-149. 

  20. Hadidi, A., Flores, R., Randles, J. W. and Semancik, J. S. 2003. Viroids, Properties, Detection, Diseases and their Control. pp. 37-141: CSIRO Publishing, California. USA. 

  21. Hadidi, A. and Yang, X. 1990. Detection of pome fruit viroids by enzymatic cDNA amplification. J. Virol. Methods 30, 261-269. 

  22. Hafner, G. J., Yang, I. C., Wolter, L. C., Stafford, M. R. and Giffard, P. M. 2001. Isothermal amplification and multimerization of DNA by Bst DNA polymerase. Biotechniques 30, 852-856, 858, 860. 

  23. Hashimoto, J. and Koganezawa, H. 1987. Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Res. 15, 7045-7052. 

  24. Hernández, C., Elena, S. F., Moya, A. and Flores, R. 1992. Pear blister canker viroid is a member of the apple scar skin subgroup (apscaviroids) and also has sequence homology with viroids from other subgroups. J. Gen. Virol. 73, 2503. 

  25. Higuchi, R., Dollinger, G., Walsh, P. S. and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY) 10, 413-417. 

  26. Horne, W. T. and Parker, E. R. 1930. The Avocado disease called sun-blotch. Phytopathology 20, 852. 

  27. Horst, R. K. and Kawamoto, S. O. 1980. Use of polyacrylamide Gel electrophoresis for Chrysanthemum Stunt Viroid in Infected Tissues. Plant Dis. 64, 186-188. 

  28. Ito, T. and Yoshida, K. 1998. Reproduction of apple fruit crinkle disease symptoms by apple fruit crinkle viroid. Acta Horticulturae 472, 587-594. 

  29. Jo, Y., Yoo, S. H., Chu, H., Cho, J. K., Choi, H., Yoon, J. Y., Choi, S. K. and Cho, W. K. 2015. Complete genome sequences of peach latent mosaic viroid from a single peach cultivar. Genome Announc. 3, e01098-15. 

  30. Keese, P. and Symons, R. H. 1985. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc. Natl. Acad. Sci. USA 82, 4582-4586. 

  31. Kim, D. H. Kim, H. R. Heo, S. Kim, S. H. Kim, M. Shin, I. S. Kim, J. H. Cho, K. H. and Hwang, J. H. 2010. Occurrence of Apple Scar Skin viroid and Relative Quantity Analysis Using Real-time RT-PCR. Res. Plant Dis. 16, 247-253. 

  32. Kim, W. S., Haj Ahmada, Y., Stobbsb, L. W. and Greigb, N. 2015. Evaluation of viroid extraction methods and application of a one-step reverse transcription real-time polymerase chain reaction assay (RT-qPCR) for the rapid detection of Chrysanthemum stunt viroid (CSVd) infection. Can. J. Plant Pathol. 37, 221-229. 

  33. Lee, D., Kim, E. J., Kilgore, P. E., Kim, S. A., Takahashi, H., Ohnishi, M., Anh, D. D., Dong, B. Q., Kim, J. S., Tomono, J., Miyamoto, S., Notomi, T., Kim, D. W. and Seki, M. 2015. Clinical evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid. PLoS One 10, e0122922. 

  34. Lenarčič, R., Morisset, D., Mehle, N. and Ravnikar, M. 2013. Fast real-time detection of Potato spindle tuber viroid by RT-LAMP. Plant Pathol. 62, 1147-1156. 

  35. Lin, Z., Zhang, Y., Zhang, H., Zhou, Y., Cao, J. and Zhou, J. 2012. Comparison of loop-mediated isothermal amplification (LAMP) and real-time PCR method targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Vet. Parasitol. 185, 296-300. 

  36. Marcelo, E., Maria Luisa, P. N.,Targon, T. V. M., Fajardo, R. F. and Elliot W. K. 2006. Citrus exocortis viroid and Hop Stunt viroid Doubly Infecting Grapevines in Brazil. Fitopatol. bras. 31, 440-446. 

  37. Mishra, M. D., Hammond, R. W., Owens, R. A., Smith, D. R. and Diener, T. O. 1991. Indian bunchy top disease of tomato plants is caused by a distinct strain of citrus exocortis viroid. J. Gen. Virol. 72, 1781-1785. 

  38. Mousumi, D., Godavarthi, B. K. S. P. and Prakash, S. B. 2010. Molecular Diagnostics: Promises and Possibilities, pp. 132: Springer Science+Business Media LLC. Springer, New York, USA. 

  39. Mullis, K. B. 1990. The unusual origin of the polymerase chain reaction. Sci. Am. 262, 56-61, 64-55. 

  40. Nakahara, K., Hataya, T. and Uyeda, I. 1999. A simple, rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridizaiton and RT-PCR. J. Virol. Methods 77, 47-58. 

  41. Narayanasamy, P. 2001. Plant Pathogen Detection and Disease Diagnosis. pp. 197-257, 2nd ed. : CRC Press, Florida, USA. 

  42. Nathalie, A., Jose, F. M., Guy, M., Thierry, C. and Vicente, P. 1996. Studies on the diagnosis of hop stunt viroid in fruit trees: identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. Eur. J. Plant Pathol. 102, 837-846. 

  43. Nikon, V., Oxana, K., Maria, P. and Christina, V. 2012. Comparison of direct-RT-PCR and dot-blot hybridization for the detection of Potato spindle tuber viroid in natural host plant species. Eur. J. Plant Pathol. 134, 859-864. 

  44. Nome, C., Giagetto, A., Rossini, M., Di Feo, L. and Nieto, A. 2012. First report and molecular analysis of Apple scar skin viroid in sweet cherry. New Dis. Rep. 25, 3. 

  45. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, E63. 

  46. Ohtsuka, Y. 1987. On Manshu-sabika-byo of apple, graft transmission and symptom variation in cultivars. J. Jpn. Soc. Hortic. Sci. 9, 282-286. 

  47. Owens, R. A. 2008. Identification of viroids by gel electrophoresis. Curr. Protoc. Microbiol. 16, 1.1-1.9. 

  48. Palukaitis, P., Hatta, T., Alexander, D. M. and Symons, R. H. 1979. Characterization of a viroid associated with avocado sunblotch disease. Virology 99, 145-151. 

  49. Park, J., Jung, Y., Kil, E. J., Kim, J., Thi Tran, D., Choi, S. K., Yoon, J. Y., Cho, W. K. and Lee, S. 2013. Loop-mediated isothermal amplification for the rapid detection of Chrysanthemum chlorotic mottle viroid (CChMVd). J. Virol. Methods 193, 232-237. 

  50. Petersson, B., Nielsen, B. B., Rasmussen, H., Larsen, I. K., Gajhede, M., Nielsen, P. E. and Kastrup, J. S. 2005. Crystal structure of a partly selfcomplementary peptide nucleic acid (PNA) oligomer showing a duplex?triplex network. J. Am. Chem. Soc. 127, 1424-1430. 

  51. Pringle, C. R. 1998. The universal system of virus taxonomy of the International Committee on Virus Taxonomy (ICTV), including new proposals ratified since publication of the Sixth ICTV Report in 1995. Arch. Virol. 143, 203-210. 

  52. Puchta, H. and Sanger, H. L. 1988. An improved procedure for the rapid one-step-cloning of full-length viroid cDNA. Arch. Virol. 101, 137-140. 

  53. Reuther, W., Calavan, E. C. and Carmen, G. E. 1989. The Citrus Industry, Vol. V., http://websites.lib.ucr.edu/agnic/webber/citrus_history.pdf. 

  54. Rizza, S., Nobile, G., Tessitori, M., Catara, A. and Conte, E. 2009. Real time RT-PCR assay for quantitative detection of Citrus viroid III in plant tissues. Plant Pathol. 58, 181-185. 

  55. Rodolfo, U., Clara, P., Juan, R. A., Fernando, R. and Gabriela, P. 2013. Evaluation of four viroid RNA extraction methods for the molecular diagnosis of CEVd in Citrus lemon using RT-PCR, Dot blot and Northern blot. Biotecnología Aplicada. 30, 125-130. 

  56. Rohde, W. and Sanger, H. L. 1981. Detection of complementary RNA intermediates of viroid replication by Northern blot hybridization. Biosci. Rep. 1, 327-336. 

  57. Running, C. M. and Schnell, R. J. 1996. Detection of avocado sunblotch viroid and estimation of infection among accessions in the national germplasm collection for avocado. Proc. Fla. State Hort. Soc. 109, 235-237. 

  58. Sänger, H. L. 1988. Viroids And Viroid Diseases. Acta Horticulturae. 234. 10.17660/ActaHortic.1988.234.9. 

  59. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. 1988. Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491. 

  60. Sano, T., Barba, M., Li, S. F. and Hadidi, A. 2010. Viroids and RNA silencing: mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops. 1, 80-86. 

  61. Sano, T., Hataya, T. and Shikata, E. 1988. Complete nucleotide sequence of a viroid isolated from Etrog citron, a new member of hop stunt viroid group. Nucleic Acids Res. 16, 347. 

  62. Semancik, J. S. and Szychowski, J. A. 1994. Avocado sunblotch disease: a persistent viroid infection in which variants are associated with differential symptoms. J. Gen. Virol. 75, 1543-1549. 

  63. Serra, P., Barbosa, C. J., Daros, J. A., Flores, R. and Duran-Vila, N. 2008. Citrus viroid V: molecular characterization and synergistic interactions with other members of the genus Apscaviroid. Virology 370, 102-112. 

  64. Shamloula, A. M., Hadidia, A., Zhua, S. F., Singhb, R. P. and Sagredoc, B. 1997. Sensitive detection of potato spindle tuber viroid using RT-PCR and identification of a viroid variant naturally infecting pepino plants. Can. J. Plant. Pathol. 19, 89-96. 

  65. Shikata, E. 1990. New viroids from Japan. Sem. Virol. 1, 107-115. 

  66. Shirato, K., Yano, T., Senba, S., Akachi, S. Kobayashi, T., Nishinaka, T., Notomi, T. and Matsuyama, S. 2014. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol. J. 11, 139. 

  67. Singh, R. P. 2014. The discovery and eradication of potato spindle tuber viroid in Canada. Virusdisease 25, 415-424. 

  68. Singh, R. P., Dilworth, A. D., Baranwal, V. K. and Gupta, K. N. 2006. Detection of Citrus exocortis viroid, Iresine viroid, and Tomato chlorotic dwarf viroid in New Ornamental Host Plants in India. Plant Dis. 90, 1457. 

  69. Sugiyama, H., Yoshikawa, T., Ihira, M., Enomoto, Y., Kawana, T. and Asano, Y. 2005. Comparison of loop-mediated isothermal amplification, real-time PCR, and virus isolation for the detection of herpes simplex virus in genital lesions. J. Med. Virol. 75, 583-587. 

  70. Baumstark, A. R. S. T. and Riesner, D. 1997. Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. J. EMBO 16, 599. 

  71. Tsutsumi, N., Yanagisawa, H., Fujiwara, Y. and Ohara, T. 2010. Detection of potato spindle tuber viroid by reverse transcription loop-mediated isothermal amplification. Res. Bull. Pl. Prot. Japan 46, 61-67. 

  72. Tuma, R. S., Beaudet, M. P., Jin, X., Jones, L. J., Cheung, C. Y., Yue, S. and Singer, V. L. 1999. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Anal. Biochem. 268, 278-288. 

  73. Visvader, J. E. and Symons, R. H. 1983. Comparative sequence and structure of different isolates of citrus exocortis viroid. Virology 130, 232-237. 

  74. Visvader, J. E. and Symons, R. H. 1985. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res. 13, 2907-2920. 

  75. Wang, D. G., Brewster, J. D., Paul, M. and Tomasula, P. M. 2015. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20, 6048-6059. 

  76. Wang, W., Chen, K. and Xu, C. 2006. DNA quantification using EvaGreen and a real-time PCR instrument. Anal. Biochem. 356, 303-305. 

  77. Weathers, L. G., Greer, F. C. J. and Harjung, M. K. 1967. Transmission of exocortis virus of citrus to herbaceous plants. Plant Dis. Rep. 51, 868-887. 

  78. Weidemann, H. and Buchta, U. 1998. A simple and rapid method for the detection of potato spindle tuber viroid (PSTVd) by RT-PCR. Potato Res. 41, 1-8. 

  79. Wu, Y. H., Cheong, L. C., Meon, S., Lau, W. H., Kong, L. L., Joseph, H. and Vadamalai, G. 2013. Characterization of Coconut cadang-cadang viroid variants from oil palm affected by orange spotting disease in Malaysia. Arch. Virol. 158, 1407-1410. 

  80. Yamamoto, H., Kaqaml, Y., Kurokawa, M., Nishimura, S. Ukawa, S. and Kubo, S. 1973. Studies on hop stunt disease in Japan. Report of the Research Laboratories of Kirin Brewery Co., Ltd. 16, 49-62. 

  81. Zhang, G., Brown, E. W. and Gonzalez-Escalona, N. 2011. Comparison of real-time PCR, reverse transcriptase realtime PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl. Environ. Microbiol. 77, 6495-6501. 

  82. Zhu, L., Shen, D., Zhou, Q., Li, Z., Fang, X. and Li, Q. Z. 2015. A locked nucleic acid (LNA)-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture. PLoS One 10, e0120464. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로