$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기하학적 비선형성을 고려한 종단 질량을 갖는 회전하는 외팔보의 모달 분석
Modal Analysis for the Rotating Cantilever Beam with a Tip Mass Considering the Geometric Nonlinearity 원문보기

한국소음진동공학회논문집 = Transactions of the Korean society for noise and vibration engineering, v.26 no.3, 2016년, pp.281 - 289  

김형래 (Hanyang University) ,  정진태 (Hanyang University)

Abstract AI-Helper 아이콘AI-Helper

In this paper, a new dynamic model for modal analysis of a rotating cantilever beam with a tip-mass is developed. The nonlinear strain such as von Karman type and the corresponding linearized stress are used to consider the geometric nonlinearity, and Euler-Bernoulli beam theory is applied in the pr...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 이 논문에서는 종단질량을 갖는 회전하는 외팔보의 모달 해석을 위한 새로운 모델링 방법을 제안한다. 제안하는 모델의 운동 방정식을 유도하기 위해서 유연체 외팔보의 자유단에 집중질량에 대한 운동에너지를 고려하였다.
  • 한편, 추가적으로 현재 모델을 사용해서 특정 회전속도를 기점으로 모드가 교환되는 모드 근접 현상을 분석하였다. 이러한 수치 결과를 통해서 우리는 고속으로 회전하는 가스터빈과 같은 시스템의 동적 특성을 정확하게 예측하기 위해서 이 논문의 모델링 방법을 제안한다.

가설 설정

  • 실제 회전하는 블레이드는 외팔보와 같이 단순한 형상은 아니지만, 이 연구에서는 회전운동이 유연체 외팔보에 미치는 영향성에 집중하기 위해 블레이드를 단순한 외팔보로 가정하였다. 수학적인 모델을 수립하기 위한 회전하는 외팔보의 개략도를 Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. Hoa, S. V., 1979, Vibration of a Rotating Beam with Tip Mass, Journal of Sound and Vibration, Vol. 67, No. 3, pp. 369~381. 

  2. Huang, C. L., Lin, W. Y. and Hsiao, K. M., 2010, Free Vibration Analysis of Rotating Euler Beams at High Angular Velocity, Vol. 88, No. 17-18, pp. 991-1001. 

  3. Banerjee, J. R. and Kennedy, D., 2014, Dynamic Stiffness Method for In-plane Free Vibration of Rotating Beams Including Coriolis Effects, Vol. 333, No. 26, pp. 7299-7312. 

  4. Kim, M. and Kang, N., 2010, Vibration Analysis of a Rotating Cantilever Beam with Tip Mass using DTM, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 20, No. 11, pp. 1058~1063. 

  5. Meirovitch, L., 1967, Analytical Methods in Vibrations, Macmillan Publishing Co., Inc., New York, Chap. 10. 

  6. Kane, T. R., Ryan, R. R. and Banerjee, A. K., 1987, Dynamics of a Cantilever Beam Attached to a Moving Base, Journal of Guidance, Control, and Dynamics, Vol. 10, No. 2, pp. 139~151. 

  7. Yoo, H. H., Ryan, R. R. and Scott, R. A., 1995, Dynamics of Flexible Beams Undergoing Overall Motions, Journal of Sound and Vibration, Vol. 181, No. 2, pp. 261~278. 

  8. Yoo, H. H., Seo, S. and Huh, K., 2002, The Effect of a Concentrated Mass on the Modal Characteristics of a Rotating Cantilever Beam, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering, Vol. 216, No. 2, pp. 151~163. 

  9. Lee, K. B. and Yoo, H. H., 2013, Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 23, No. 8, pp. 742~751. 

  10. Kwon, S. and Yoo, H. H., 2015, Mode and Transient Response Localization Occurred in Rotating Multi-Packet Blade Systems due to Random Mistuning, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 10, pp. 2063~2071. 

  11. Simo, J. C. and Vu-quoc, L., 1987, The Role of Non-linear Theories in Transient Dynamic Analysis of Flexible Structures, Journal of Sound and Vibration, Vol. 119, No. 3, pp. 487~508. 

  12. Pesheck, E., Pierre, C. and Shaw, S. W., 2001, Accurate Reduced-order Models for a Simple Rotor Blade Model Using Nonlinear Normal Modes, Mathematical and Computer Modelling, Vol. 33, No. 10-11, pp. 1085~1097. 

  13. Sharf, I., 1996, Geometrically Non-linear Beam Element for Dynamics Simulation of Multibody Systems, Internationals Journal for Numerical Methods in Engineering, Vol. 39, No. 5, pp. 763~786. 

  14. Wang, F. X., 2013, Model Reduction with Geometric Stiffening Nonlinearities for Dynamic Simulations of Multibody Systems, International Journal of Structural Stability and Dynamics, Vol. 13, No. 8, pp. 1~27. 

  15. Kim, H., Yoo, H. H. and Chung, J., 2013, Dynamic Model for Free Vibration and Response Analysis of Rotating Beams, Journal of Sound and Vibration, Vol. 332, No. 22, pp. 5917~5928. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로