$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

볼바키아 세균에 의한 절지동물 기주의 생식적 변화와 생물적방제 프로그램에 이용 방안
Wolbachia-mediated Reproductive Alterations in Arthropod Hosts and its use for Biocontrol Program 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.55 no.2, 2016년, pp.177 - 188  

엘라히 로스타미 (부알리 시나 대학교, 농업부, 식물보호학과) ,  후세인 마다디 (부알리 시나 대학교, 농업부, 식물보호학과) ,  하비브 아바시포르 (샤헤드 대학교, 농업과학부, 식물보호학과) ,  쉬바 시바라마크리쉬난 (바라티다산 대학교, 유전생명공학과, 티루치라팔리)

초록
AI-Helper 아이콘AI-Helper

알파 프로테박테리아(${\alpha}-proteobacterium$)인 볼바키아(Wolbachia) 세균은 절지동물 세포내의 중요한 공생균 중의 하나이다. 그람 음성 세균인 이 공생균은 기주동물의 여러 생물적 과정에 관여하고 있으며, 현재 생물적 방제 수단으로 주목 받고 있다. 볼바키아는 기주 세포의 세포질에 서식하는 세균인데 암컷을 통하여 세대간 전염된다. 볼파키아의 감염 개체 밀도를 높이기 위해 기주의 생식방식을 조작하는 다양한 전략을 발달시켰다. 볼바키아 유전자형 계통은 볼바키아 표면 단백질(WSP)의 고변이영역 아미노산 서열과 복합좌위 서열 타이핑(Multilocus sequence typing, MLST)으로 결정된다. 상이한 유전계통 판별은 wsp, 16S rRNA, ftsZ, gltA, groEL 등 유전자 분자표지를 이용하게 된다.. 이 계통 볼바키아 세균과 그들의 우월한 표현형이 농업해충과 인간의 질병매개 곤충에 대한 방제 프로그램에서 이용 가능성이 고려되고 있다. 볼바키아 표현형들은 세포질불일치(cytoplasmic incompatibility, CI), 단성생식 유도(parthenogenesis induction, PI), 여성화(feminization, F), 수컷치사(male killing, MK) 등을 유발하는 것으로 알려져 있다. 기타 볼바키아 세균의 농업과 위생곤충 방제 프로그램에서 응용 방안을 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

The alpha-proteobacterium Wolbachia is one of the most important intracellular symbionts of arthropods. This Gram-negative bacterium is involved in many biological processes and is currently considered as a potential tool for biological control. Wolbachia is a cytoplasmic bacterium, maternally trans...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2001; Islam, 2007). This review focuses on the mechanisms induced by Wolbachia in arthropods and its potential role in the control of pests and vector-borne diseases. Despite significant progress in the field of ecology and Wolbachia population genetics, the use of the bacterium as a new tool in biological control of arthropods of medical and agricultural importance is still challenged by several strategic problems, such as the unknown effect of speciation, the difficulty of mass production, the absence of the bacterium in some species and the unknown adaptive outcomes of transfection of the bacterium to novel hosts (both at the phenotypic and cellular levels).

가설 설정

  • Lock and key model. A: Wolbachia (white symptom) produce a lock, (red circle) binding, for example to paternal chromosomes (large black bar). B: The bacteria are, then, saved in a waste-bag structure (w.
  • Slow-motion model. A: Wolbachia (white symptom) produce a slowing -down factor (red circles). B: The bacteria are infusing from the maturing spermatocyte, with most of the cytoplasm, being in a waste-bag structure (w.
  • A: Wolbachia (white symptom) produce a slowing -down factor (red circles). B: The bacteria are infusing from the maturing spermatocyte, with most of the cytoplasm, being in a waste-bag structure (w.b.). E: The sperm cell bearing slowed-down paternal chromosomes enters an oocyte infected maternal by Wolbachia.
  • C, D: Incompatible cross between an infected male and an uninfected female. C: Paternal chromosomes (black tape) in the mature spermatozoon (spz) are not functional because of missing the protein. D: Paternal chromosomes are not functional normally in mitosis resulting in Cytoplasmic incompatibility (CI).
  • ) with most of the cytoplasm, so, being absent from the mature spermatozoon (spz). C: The sperm cell transporting locked paternal chromosomes enters an uninfected egg meeting unmodified maternal chromosomes (grey tape). D: In the absence of a key to remove the lock, paternal chromosomes are not functional and only maternal chromosomes participates normally in mitosis, resulting in Cytoplasmic incompatibility (CI).
  • C: Paternal chromosomes (black tape) in the mature spermatozoon (spz) are not functional because of missing the protein. D: Paternal chromosomes are not functional normally in mitosis resulting in Cytoplasmic incompatibility (CI). E, F: Compatible cross between two infected individuals.
  • D: In the absence of a key to remove the lock, paternal chromosomes are not functional and only maternal chromosomes participates normally in mitosis, resulting in Cytoplasmic incompatibility (CI). E: In an infected oocyte, Wolbachia produce a key (green symptom). F: The lock is, so, removed from parental chromosomes and mitosis takes place normally, rescuing the embryo (Poinsot et al.
  • E, F: Compatible cross between two infected individuals. E: In an infected oocyte, the Wolbachia give back to maternal and paternal chromosomes the host protein previously titrated-out. F: mitosis can now proceed normally, rescuing the embryo (Poinsot et al.
  • ). E: The sperm cell bearing slowed-down paternal chromosomes enters an oocyte infected maternal by Wolbachia. F: Since maternal chromosome sets are synchronous, and the first mitosis proceeds normally (Poinsot et al.
본문요약 정보가 도움이 되었나요?

참고문헌 (68)

  1. Augustinos, A., Santos-Garcia, D., Dionyssopoulou, E., Moreira, M., Papapanagiotou, A., Scarvelakis, M., Doudoumis, V., Ramos, S., Aguiar, A., Borges, P.A.V., Khadem, A., Latorre, A., Tsiamis, G., Bourtzis, K., 2011. Detection and characterization of Wolbachia infections in natural populations of aphids. Is the hidden diversity fully unraveled? PLoS One 6, 1-11. 

  2. Bandi, C., Anderson, T.J., Genchi, C., Blaxter, M.L. 1998. Phylogeny of Wolbachia in filarial nematodes. Proc. Biol. Sci. 265, 2407-2413. 

  3. Bandi, C., Dunn, A.M., Hurst, G.D.D., Rigid, T., 2001. Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol. 17, 88-94. 

  4. Beard, C.B., O'Neill, S.L., Tesh, R.B., Richards, F.F., Askoy, S., 1993. Modification of arthropods vector competence via symbiotic bacteria. Parasitol. Today. 9, 179-183. 

  5. Bouchon, D., Rigaud, T., Juchault, P., 1998. Evidence for wide spread Wolbachia infection in isopoda crustaceans: molecular idenfication and host feminization. Proc. R. Soc. B. Biol. Sci. 265, 1081-1090. 

  6. Braig, H.R., Guzman, H., Tesh, R.B., O'Neill, S.L., 1994. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature. 367, 453-455. 

  7. Brelsfoard, C.L., Dobson, S.L., 2009. Wolbachia-based strategies to control insect pests and disease vectors. Asia Pac. J. Mol. Biol. Biotechno. 17, 55-63. 

  8. Chai, H.N., Du, Y.Z., Qiu, B.L., Zhai, B.P., 2011. Detection and phylogenetic analysis of Wolbachia in the Asiatic rice leafroller, Cnaphalocrocis medinalis, in Chinese populations. J. Insect Sci. 11, 1-13. 

  9. Charlat, S., Nirgianaki, A., Bourtzis, K., Merot, H., 2002. Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and Drosophila sechellia. Evolution 56, 1735-1742. 

  10. Dobson, S.L., Marsland, E.J., Veneti, Z., Bourtzis, K., O'Neill, S.L., 2002. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl. Environ. Microbiol. 68, 656-660. 

  11. Farrokhi, S., Ashouri, A., Shirazi, J., Allahyari, H., Huigens, M.E., 2010. A comparative study on the functional response of Wolbachiainfected and uninfected forms of the parasitoid wasp Trichogramma brassicae. J. Insect Sci. 10, 1-11. 

  12. Flanders, S.A., 1965. On the sexuality and ratios of hymenopterous populations. Am. Nat. 99, 489-494. 

  13. Gottlieb, Y., Zechori-Fein, E., Werren, J.H., Karr T.L., 2002. Diploidy restoration in Wolbachia-infected Muscidifrurax uniraptor (Hym., Pteromalidae). J. Invertebr. Pathol 81, 166-174. 

  14. Guruprasad, N.M., Jalali, S.K., Puttaraju, H.P., 2014. Wolbachia-a foe for mosquitoes. Asian Pac. J. Trop. Dis. 4, 78-81. 

  15. Hamm, C.A., Handley, C.A., Pike, A., Forister, M.L., Fordyce, J.A., Nice, C.C., 2014. Wolbachia infection and Lepidoptera of conservation concern. J. Insect Sci. 14, 1-8. 

  16. Hoerauf, A., Rao, R.U., 2007. Wolbachia: A Bug's life in another bug. Issues in Infectious Diseases, Vol. 5. S. Karger publication, Basel. 

  17. Hoerauf, A., Mand, S., Fischer, K., Kruppa, T., Marfo Debrekyei, Y., Debrah, A.Y., Pfarr, K. M., Adjei, O., Buttner, D.W., 2003. Doxy cycline as a novel strategy against bancroftian filariasis-depletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of micro filaria production. Med. Microbiol. Immunol. 129, 211-216. 

  18. Hoerauf, A., Volkmann, L., Hamelmann, C., Adjei, O., Autenrieth, I.B., Fleischer, B., Buttner, D., 2000. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet. 355, 1242-1243. 

  19. Hoffmann, A.A., Montgomery, B.L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P.H., Muzzi, F., Greenfield, M., 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476, 454-457. 

  20. Hoffmann, A.A., Ross, P.A., Rasic, G., 2015. Wolbachia strains for disease control: ecological and evolutionary considerations. Evolutionary Applications. John Wiley & Sons Ltd., 751-768. 

  21. Hoffman, A.A., Turelli, M., 1988. Unidirectional incompatibility in Drosophila simulans: Inheritance, geographic variation and fitness. Genetics 119, 435-444. 

  22. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.Y., Fukatsu, T., 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 107, 769-774. 

  23. Hurst, G.D.D., Hurst, L.D., Majerus, M.E.N., 1997. Cytoplasmic sex-ratio distorters. In: Influential passenger: microbes and invertebrate reproduction (Eds. S. L. O'Neill, A. A. Hoffmann, and J. H. Werren) 125-154. Oxford University Press, New York). 

  24. Islam, M.S., 2007. Wolbachia-mediated reproductive alterations in invertebrate hosts and biocontrol implication of the bacteria: an update. Univ. J. Zool. Rajshahi Univ. 26, 1-19. 

  25. Jeyaprakash, A., Hoy, M.A., 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol. Biol. 9, 393-405. 

  26. Kageyama, D., Nishimura, G., Hoshizaki, S., Ishikawa, Y., 2002. Feminizing Wolbachia in an insect Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity 88, 444-449. 

  27. Kambris, Z., Cook, P.E., Phuc, H.K., Sinkins, S.P., 2009. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326, 134-136. 

  28. Karimi, J. Darsouei, R., 2012. Wolbachia infection among some fruit flies species of Khorasan an attempt using MLST system. 20th Iranian Plant Protection Congress, 868. 

  29. Kean, J. Rainey, S.M., McFarlane, M., Donald, C.L., Schnettler, E., Kohl, A., Pondeville, E., 2015. Fighting Arbovirus transmission: Natural and engineered control of vector competence in Aedes mosquitoes. Insects 6, 236-278. 

  30. Lo, N., Casiraghi, M., Salati, E., Bazzocchi, C., Bandi, C., 2002. How many Wolbachia supergroups exist? Mol. Biol. Evol. 19, 341-346. 

  31. Lo, N., Paraskevopoulos, C., Bourtzis, K., O'Neill, S.L., Werren, J.H., Bordenstein, S.R., Bandi, C., 2007. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int. J. Syst. Evol. Microbiol. 57, 654-657. 

  32. Lusis, J.J., 1947. Some rules of reproduction in populations of Adalia bipunctata: non-male strains in populations. Dokl. Akad. Nauk. SSSR. 57, 951-954. 

  33. McMeniman, C.J., Lane, R.V., Cass, B.N., Fong, A.W., Sidhu, M., Wang, Y.F., O'Neill, S.L.,2009. Stable introduction of a lifeshortening Wolbachia infection into the mosquito Aedes aegypti. Science 323, 141-144. 

  34. Mehrabadi, M., Bandani, A.R., 2008. Biology of Wolbachia and mechanisms of induced cytoplasmic incompatibility (CI) in insects. 23th International Congress of Entomology, Durban, South Africa. 

  35. Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., Lu, G.J., Pyke, A.T., Hedges, L.M., Rocha, B.C., 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 139, 1268-1278. 

  36. O'Connor, L., Plichart, C., Sang, A.C., Brelsfoard, C.L., Bossin, H.C., Dobson, S.L., 2012. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl. Trop. Dis. 6, e1797. 

  37. O'Neill, S.L., Pettigrew, M.M., Sinkins, S.P., Braig, H.R., Andreadis, T.G. Tesh, R.B., 1997. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 6, 33-39. 

  38. Parvizi, P., Fardid, F., Amirkhani, A., 2010. Isolation process of the intracellular Rickettsia bacterium Wolbachia pipientis in Phlebotomus papatasis and fly in Iran. Iran. J. Med. Microbiol. 4, 53-60. 

  39. Peng, Y., Wang, Y., 2009. Infection of Wolbachia may improve the olfactory response of Drosophila. Chinese Sci. Bull. 54,1369-1375. 

  40. Poinsot, D., Charlat, S., Mercot, H., 2003. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts. BioEssays 25, 259-265. 

  41. Rasic, G., Endersby, N.M., Williams, C., Hoffmann, A.A., 2014. Using Wolbachia-based releases for suppression of Aedes mosquitoes: insights from genetic data and population simulations. Ecol. Appl. 24, 1226-1234. 

  42. Rigaud, T., Juchault, P., 1995. Success and failure of horizontal transfer of feminizing Wolbachia endosymbionts in woodlice. J. Evol. Biol. 8, 249-255. 

  43. Ros, V.D., Fleming, V.M., Feil, E.J., Breeuwer, J.A.J., 2009. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036-1043. 

  44. Ros, V.D., Fleming, V.M., Feil, E.J., Breeuwer, J.A.J., 2012. Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC Microbiol. 12, 1-15. 

  45. Rousset, F., Stordeur, E.D., 1994. Properties of Drosophila simulans strain experimentally infected by different clones of the bacterium Wolbachia. Heredity 72, 325-331. 

  46. Silva, I.M.M.S., van-Meer, M.M.M., Roskan, M.M., Hoogenboom, A., Gort, G., Stouthamer, R., 2000. Potential of Wolbachia-infected versus uninfected wasps: Laboratory and greenhouse evaluation of Trichogramma cordubensis and Trichogramma deion strain. Biocontrol Sci. Technol. 10, 223-228. 

  47. Sinikin, S.P., van-Meer, C.F., O'Neill, S.L., 1997. The potential application of inherited symbiont systems to pest control. In: Inherited microorganisms and Arthropoda reproduction (Eds. S. L. O'Neill, A. A. Hoffmann, and J. H. Werren) 155-175. Oxford University Press, New York. 

  48. Stouthamer, R., 1993. The use of sexual versus asexual wasps in biological control. Entomophaga 38, 3-6. 

  49. Stouthamer, R., Breeuwer, J.A.J., Hurst, G.D.D., 1999. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71-102. 

  50. Stouthamer, R., Breeuwer, J.A.J., Luck, R.F., Werren, J.H., 1993. Molecular identification of microorganisms associated with parthenogenesis. Nature 361, 66-68. 

  51. Stouthamer, R., Pinto, J.D., Platner, G.R., Luck, R.F., 1990. Taxonomic status of thelytokous froms of Trichogramma. Ann. Entomol. Soc. Am. 83, 475-481. 

  52. Stouthamer, R., van Tilborg, M., De-Jong, J.H., Nunney, L., Luck, R.F., 2001. Selfish element maintains sex in natural populations of a parasitoid wasp. Proc. R. Soc. B. 268, 617-622. 

  53. Tagami, Y., Miura, K., 2004. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol. Biol. 13, 359-364. 

  54. Teixeira, L., Ferreira, A., Ashburner, M., 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PloS Biol. 6, 2753-2763. 

  55. Tram, U., Ferree, P.M., Sullivan, W., 2003. Identification of Wolbachia-host interacting factors through cytological analysis. Microbes Infect. 5, 999-1011. 

  56. Tram, U., Fredrick, K., Werren, J.H., Sullivan, W., 2006. Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype. J. Cell Sci. 119, 3655-63. 

  57. Tsillassie, H., Legesse, M., 2007. The role of Wolbachia bacteria in the pathogenesis of on chocerciasis and prospects for control of the disease. Ethiop. Med. J. 45, 213-219. 

  58. van Borm, S., Wenseleers, T., Billen, J., Boomsma, J.J., 2001. Wolbachia in leafcutter ants: A widespread symbionts that may induce male killing or incompatible matings. J. Evol. Biol. 14, 805-814. 

  59. van Meer, M.M.M., van-Kan, F.J.P.M., Stouthamer, R., 1996. Can Wolbachia micro-injections induce parthenogenesis in sexual insects? Sommeijer, M.J. Francke, P.J., In: Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.). Netherlands Entomological Society, Plantage Middenlaan 64, 1018 DH Amsterdam 414, Netherlands, 43-44. 

  60. Vavre, F., Jong, d. J.H., Stouthamer, R., 2004. Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 93, 592-596. 

  61. Walker, T., Johnson, P.H., Moreira, L.A., Iturbe-Ormaetxe, I., Frentiu, F.D., McMeniman, C.J., Leong, Y.S., 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450-453. 

  62. Weeks, A.R., Reynolds, K.T., Hoffmann, A.A., 2002. Wolbachia dynamics and host effects: What has (and has not) been demonstrated? Trends Ecol. Evol. 17, 257-262. 

  63. Wereen, J.H., Boldo, L., Clark, M.E., 2008. Wolbachia manipulators of invertebrate biology. Nat. Rev. Microbiol. 6,741-751. 

  64. Werren, J. H., 1991. The Paternal sex ratio chromosome of Nasonia. Am Nat. 137, 392-402. 

  65. Werren, J. H., 1997. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587-609. 

  66. Werren, J.H., Windsor, D., Guo, L.R., 1995. Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. B. 262, 197-204. 

  67. Zchori-Fein E, Gottlieb, Y., Coll, M., 2000. Wolbachia density and host fitness components in Muscidifrurax uniraptor (Hymenoptera: Pteromalidae). J. Invertebr. Pathol. 72, 267-272. 

  68. Zhou, W.G., Rousset, F., O'Neill, S.L., 1998. Phylogeny and PCRbased classification of Wolbachia strains using wsp gene sequences. Proc. R. Soc. B. 265, 509-515. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로