$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

'되먹임 기반' 사구 역학 모형의 호환 가능성에 대한 이론적 고찰 - 플럭스, 사면조정, 바람그늘 문제를 중심으로 -
Theoretical Investigations on Compatibility of Feedback-Based Cellular Models for Dune Dynamics : Sand Fluxes, Avalanches, and Wind Shadow 원문보기

한국지역지리학회지 = Journal of the Korean Association of Regional Geographers, v.22 no.3, 2016년, pp.681 - 702  

류호상 (전북대학교 사범대학 지리교육과)

초록
AI-Helper 아이콘AI-Helper

풍성사구는 바람, 모래 지면, 식생 간 상호작용의 결과로 발달하는 지형이다. 되먹임 기반 사구역학 모형은 풍성사구가 자기조직 현상에 의해 생성된다는 데 초점을 맞춘다. 풍속장의 정확한 재현에 초점을 맞추는 외력 기반 모형과는 달리 되먹임 기반 모형은 지형발달 과정에서 도출한 현상학적 규칙을 이용해 지형 역학을 분석한다. 되먹임 기반 모형은 성공적으로 사구형성 과정을 재현하지만, 규칙 설정의 융통성 수준에 대한 이해를 요구한다. 이 연구는 사구의 패턴을 재현하는 데 성공적이라고 평가되는 '모래판 모형(sand slab models)', 'Nishimori 모형', 'de Castro 모형'을 비교하여 알고리듬간 호환 가능성을 분석하였다. 주요 결과는 다음과 같다. 첫째, 모래이동 플럭스의 관점에서 모래판 모형과 de Castro 모형은 호환이 용이하지만 Nishimori 모형은 조정인자를 고려해야 한다. 둘째, 사면조정에 관한 Nishimori 모형의 알고리듬은 다른 모형이 채택하고 있는 안식각 기준을 손쉽게 이식할 수 있다. 셋째, 모래판 모형과 de Castro 모형이 채택하는 바람그늘 규칙은 사구 성장 및 발달에 필수 요인은 아닐 수 있으며, 사구열 수준의 상호작용에서 보다 중요한 역할을 할 것으로 보인다. 모래판 모형과 de Castro 모형, Nishimori 모형은 대체로 호환 가능한 구조를 갖추고 있다고 판단되나 호환 가능성의 수준을 판단하려면 보다 체계적인 검토가 필요하다.

Abstract AI-Helper 아이콘AI-Helper

Two different modelling approaches to dune dynamics have been established thus far; continuous models that emphasize the precise representation of wind field, and feedback-based models that focus on the interactions between dunes, rather than aerodynamics. Though feedback-based models have proven th...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
되먹임 기반 모형은 어떤 관점에서 사구를 이해하는 방법인가? ‘되먹임 기반’ 모형은 지형발달이 지형형성기구의 일방적인 작용에 의한 것이 아니라 지형과 외력의 상호작용, 지형 내부 구성요소 간의 상호작용 등에 의해 지배된다는 점을 중시하는 접근법에 토대를 둔 것이다(Coco and Murray, 2007). 되먹임 기반 격자형 모형을 이용하여 사구 지형역학을 이해하고자 하는 접근은 사구가 바람, 지형, 식생간 상호작용의 산물이라는 데 착안한다.
풍성사구란? 풍성사구(風成砂丘, Aeolian Dunes)1)는 흔히 바람에 의해 형성되는 지형이라고 설명하지만 보다 정확히 말하면 바람과 지표 기복, 식생 간의 상호작용에 의해 발달・유지되는 지표상의 패턴이다 (Baas, 2007; Kocurek et al., 2010).
되먹임 기반 모형인 모래판 모형, 'Nishimori 모형', 'de Castro 모형을 비교하여 호환 가능성을 분석한 결과는? 주요 결과는 다음과 같다. 첫째, 모래이동 플럭스의 관점에서 모래판 모형과 de Castro 모형은 호환이 용이하지만 Nishimori 모형은 조정인자를 고려해야 한다. 둘째, 사면조정에 관한 Nishimori 모형의 알고리듬은 다른 모형이 채택하고 있는 안식각 기준을 손쉽게 이식할 수 있다. 셋째, 모래판 모형과 de Castro 모형이 채택하는 바람그늘 규칙은 사구 성장 및 발달에 필수 요인은 아닐 수 있으며, 사구열 수준의 상호작용에서 보다 중요한 역할을 할 것으로 보인다. 모래판 모형과 de Castro 모형, Nishimori 모형은 대체로 호환 가능한 구조를 갖추고 있다고 판단되나 호환 가능성의 수준을 판단하려면 보다 체계적인 검토가 필요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Baas, A.C.W. and Nield, J.M., 2007, Modelling vegetated dune landscapes, Geophysical Research Letters, 34, L06405, doi:10.1029/2006GL029152. 

  2. Baas, A.C.W., 2007, Complex systems in aeolian geomorphology, Geomorphology, 91, 311-331. 

  3. Bishop, S.R., Momiji, H., Carrentero-Gonzalez and Warren, A., 2002, Modelling Desert Dune Fields Based on Discrete Dynamics, Discrete Dynamics in Nature and Society, 7(1), 7-17. 

  4. Coco, G. and Murray, A.B., 2007, Patterns in the sand: From forcing templates to selforganization, Geomorphology, 91, 271-290. 

  5. de Castro, F., 1995, Computer simulation of the dynamics of a dune system, Ecological Modelling, 78, 205-217. 

  6. Duran, O., Parteli, E.J.R. and Herrmann, H.J., 2010, A continous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields, Earth Surface Processes and Landforms, 35, 1591-1600. 

  7. Jackson, D.W.T., Beyers, J.H.M., Lynch, K., Cooper, J.A.G., Baas, A.C.W. and Delgado-Fernandez, I., 2011, Investigation of threedimensional wind flow behaviour over coastal dune morphology under offshore winds using computational fluid dynamics (CFD) and ultrasonic anemometry, Earth Surface Processes and Landforms, 36, 1113-1124. 

  8. Jackson, P.S. and Hunt, J.C.R., 1975, Turbulent wind flow over a low hill, Quarterly Journal of the Royal Meteorological Society, 101, 929-955. 

  9. Katsuki, A., Nishimori, H., Endo, N. and Tankguchi, K., 2005, Collision Dynamics of Two Barchan Dunes Simulated Using a Simple Model, Journal of the Physical Society of Japan, 74(2), 538-541. 

  10. Kocurek, G., Ewing, R.C. and Mohrig, D., 2010, How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions, Earth Surface Processes and Landforms, 35, 51-63. 

  11. Kroy, K., Sauermann, G. and Herrmann, H.J., 2002a Minimal model for sand dunes, Physical Review Letters, 88(5), DOI:10.1103/PhysRevLett.88.054301. 

  12. Kroy, K., Sauermann, G. and Herrmann, H.J., 2002b, Minimal model for aeolian sand dunes, Physical Review, E, 66, 031302, DOI:10.1103/PhysRevE.66.031302. 

  13. Lima, A.R., Sauermann, G., Herrmann, H.J. and Kroy, K., 2002, Modelling a dune field, Physica, A, 310, 487-500. 

  14. Maun, M.A., 2009, The Biology of Coastal Sand Dunes, Oxford University Press. 

  15. Momiji, H., Carretero-Gonzalez, R., Bishop, S.R. and Warren, A., 2000, Simulation of the effect of wind speedup in the formation of transverse dune fields, Earth Surface Processes and Landforms, 25, 905-918. 

  16. Nield, J.M. and Baas, A.C.W., 2008a, Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach, Earth Surface Processes and Landforms, 33, 724-740. 

  17. Nield, J.M. and Baas, A.C.W., 2008b, The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response, Global and Planetary Change, 64, 76-92. 

  18. Nishimori, H. and Ouchi, N., 1993, Formation of Ripple Patterns and Dunes by Wind-blown Sand, Physical Reveiw Letters, 71(1), 197-200. 

  19. Nishimori, H. and Tanaka, H., 2001, A simple model for the formation of vegetated dunes, Earth Surface Processes and Landforms, 26, 1143-1150. 

  20. Nishimori, H., 2015, Dynamics of Sand Ripples and Dunes, Forma, 30, S91-S94. 

  21. Nishimori, H., Yamasaki, M. and Andersen, K.H., 1998, A simple model for the various pattern dynamics of dunes, International Journal of Modern Physics, B, 12(3), 257-272. 

  22. Ortiz, P. and Smolarkiewicz, P.K., 2006, Numerical simulation of sand dune evolution in severe winds, International Journal for Numerical Methods in Fluids, 50, 1229-1246. 

  23. Parsons, D.R., Walker, I.J. and Wiggs, G.F.S., 2004, Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry, Geomorphology, 59, 149-164. 

  24. Parteli, E.J.R. and Herrmann, H.J., 2003, A simple model for a transverse dune field, Physica, A, 327, 554-562. 

  25. Pelletier, J.D., Mitasova, H., Harmon, R.S. and Overton, M., 2009, The effects of interdune vegetation changes on eolian dune field evolution: a numerical modeling case study at Jockey's Ridge, North Carolina, USA, Earth Surface Processes and Landforms, 34, 1245-1254. 

  26. Pethick, J., 1984, An Introduction to Coastal Geomorphology, Routledge. 

  27. Sauermann, G., Kroy, K. and Herrmann, H.J., 2001, Continuum saltation model for sand dunes, Physical Review, E, 64, 031305, DOI:10.1103/PhysRevE.64.031305. 

  28. Smyth, T.A.G., Jackson, D.W.T. and Cooper, J.A.G., 2011, Computational Fluid Dynamic modelling of Three-Dimensional airflow over dune blowouts, Journal of Coastal Research, SI64, 314-318. 

  29. Stallins, J.A. and Parker, 2003, The Influence of Complex Systems Interactions on Barrier Island Dune Vegetation Pattern and Process, Annals of the Association of American Geographers, 93(1), 13-29. 

  30. Stallins, J.A., 2005, Stablity domains in barrier island dune systems, Ecological Complexity, 2, 410-430. 

  31. van Boxel, J.H., Arens, S.M. and van Dijk, P.M., 1999, Aeolian processes across transverse dunes I: modelling the air flow, Earth Surface Processes and Landforms, 24, 255-270. 

  32. Weng, W.S., Hunt, J.C.R., Carruthers, D.J., Warren, A., Wiggs, G.F.S., Livingston, I. and Castro, I., 1991, Air flow and sand transport over sand-dunes, Acta Mechanica (Suppl.), 2, 1-22. 

  33. Werner, B.T. and Kocurek, G., 1997, Bed-form dynamics: does the tail wag the dog? Geology, 25, 771-774. 

  34. Werner, B.T. and Kocurek, G., 1999, Bedform spacing from defect dynamics, Geology, 27, 727-730. 

  35. Werner, B.T., 1995, Eolian dunes: computer simulations and attractor interpretation, Geology, 23(12), 1107-1110. 

  36. Wiggs, G.F.S., 2001, Desert dune processes and dynamics, Progress in Physical Geography, 25(1), 53-79. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로