$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유기발광다이오드 조명용 유기발광체의 최근 동향
Recent Progress on Organic Emitters for Organic Light Emitting Diode Lightings 원문보기

공업화학 = Applied chemistry for engineering, v.27 no.5, 2016년, pp.455 - 466  

정효철 (경희대학교 화학공학과) ,  이하윤 (경희대학교 화학공학과) ,  강석우 (경희대학교 화학공학과) ,  안병관 (가톨릭대학교 화학과) ,  육경수 (성균관대학교 화학공학과) ,  박영일 (한국화학연구원 그린정밀화학센터) ,  김범진 (한국화학연구원 그린정밀화학센터) ,  박종욱 (경희대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

유기 발광 다이오드(OLED)는 학문 및 산업분야에서 많은 관심을 받고 있다. OLED는 이미 휴대폰과 TV분야에서 상업화에 성공하고 있으며, 조명분야에서는 기존에 사용되어왔던 백열등, 형광등과는 다르게 면발광, 대면적, 초경량, 초박형, 유연성의 특징은 물론 낮은 에너지 사용 등의 차별성을 가지고 있기 때문에 최근 많은 관심을 받고 있다. 본 논문에서는 white organic light-emitting diode (WOLED)에 적용되는 대표적인 형광 및 인광 발광 재료들을 소개한다. 이렇게 선행 연구된 물질들을 이해하고 체계적으로 분류하는 것은 앞으로 새로운 발광 재료를 연구, 개발하는데 큰 도움을 줄 수 있을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

Organic light-emitting diode (OLED) has drawn a lot of attention in academic and industrial fields, which has been successfully commercialized in mobile phones and TV's. In the field of lighting, unlike the existing incandescent or fluorescent lighting, OLED has distinctive qualities such as surface...

주제어

참고문헌 (62)

  1. C. W. Tang and S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913-915 (1987). 

  2. Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, Three-color, tunable, organic light-emitting devices, Science, 276, 2009-2011 (1997). 

  3. S. R. Forrest, The road to high efficiency organic light emitting devices, Org. Electron., 4, 45-48 (2003). 

  4. A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, Organic light-emitting devices for illumination quality white light, Appl. Phys. Lett., 80, 3470-3472 (2002). 

  5. B. W. D'Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 16, 1585-1595 (2004). 

  6. C. P. Wang, M. H. Wu, H. W. Lin, H. C. Pan, B. H. Liu, and J. H. Jou, High-efficiency flexible white organic light-emitting diodes, J. Mater. Chem., 20, 6626-6629 (2010). 

  7. Y. L. Chang, Y. Song, Z. Wang, M. G. Helander, J. Qiu, L. Chai, Z. Liu, G. D. Scholes, and Z. Lu, Highly efficient warm white organic light-emitting diodes by triplet exciton conversion, Adv. Funct. Mater., 23, 705-712 (2012). 

  8. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature, 459, 234-238 (2009). 

  9. M. Thomschke, S. Reineke, B. Lussem, and K. Leo, Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films, Nano Lett., 12, 424-428 (2012). 

  10. J. B. Birks, Photophysics of Aromatic Compounds, Wiley, New York (1970). 

  11. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys., 90, 5048-5051 (2001). 

  12. R. J. Holmes, S. R. Forrest, Y. -J. Tung. Y, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Blue organic electrophosphorescence using exothermic host-guest energy transfer, Appl. Phys. Lett., 82, 2422-2424 (2003). 

  13. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, Confinement of triplet energy on phosphorescent molecules for highly efficient organic blue-light emitting devices, Appl. Phys. Lett., 83, 569-571 (2003). 

  14. G. T. Lei, L. D. Wang, L. Duan, J. H. Wang, and Y. Qiu, Highly efficient blue electrophosphorescent devices with a novel host material, Synth. Met., 144, 249-252 (2004). 

  15. D. R. Whang, Y. You, S. H. Kim, W. I. Jeong, Y. S. Park, J. J. Kim, and S. Y. Park, A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices, Appl. Phys. Lett., 91, 233501-233501-3 (2007). 

  16. H. Fukagawa, W. Watanabe, T. Tsuzuki, and S. Tokito, Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure, Appl. Phys. Lett., 93, 133312-133312-3 (2008). 

  17. Y. Agata, H. Shimizu, and J. Kido, Syntheses and properties of novel quarterphenylene-based materials for blue organic light-emitting devices, Chem. Lett., 36, 316-317 (2007). 

  18. L. S. Cui, Y. Liu, Q. Li, Z. Q. Jiang, and L. S. Liao, A rational molecular design on choosing suitable spacer for better host materials in highly efficient blue and white phosphorescent organic light-emitting diodes, Org. Electron., 15, 1368-1377 (2014). 

  19. T. Tsuboi, H. Murayama, S. J. Yeh, M. F. Wu, and C. T. Chen, Photoluminescence characteristics of blue phosphorescent $Ir^{3+}$ compounds FIrpic and FIrN4 doped in mCP and SimCP, Opt. Mater., 31, 366-371 (2008). 

  20. T. Tsuboi, S. W. Liu, M. F. Wu, and C. T. Chen, Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes, Org. Electron., 10, 1372-1377 (2009). 

  21. M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. C. Wu, F. C. Fang, Y. L. Liao, K. T. Wong, and C. I. Wu, Highly efficient organic blue electrophosphorescent devices based on 3,6-bis(triphenylsilyl) carbazole as the host material, Adv. Mater., 18, 1216-1220 (2006). 

  22. M. H. Tsai, T. H. Ke, H. W. Lin, C. C. Wu, S. F. Chiu, F. C. Fang, Y. L. Liao, K. T. Wong, Y. H. Chen, and C. I. Wu, Triphenylsilyl- and trityl-substituted carbazole-based host materials for blue electrophosphorescence, ACS Appl. Mater. Interfaces, 1, 567-574 (2009). 

  23. S. H. Kim, J. Jang, S. J. Lee, and J. Y. Lee, Deep blue phosphorescent organic light-emitting diodes using a Si based wide bandgap host and an Ir dopant with electron withdrawing substituents, Thin Solid Films, 517, 722-726 (2008). 

  24. S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Lee, Phenylcarbazole-based phosphine oxide host materials for high efficiency in deep blue phosphorescent organic light-emitting diodes, Adv. Funct. Mater., 19, 3644-3649 (2009). 

  25. H. S. Son, C. W. Seo, and J. Y. Lee, Correlation of the substitution position of diphenylphosphine oxide on phenylcarbazole and device performances of blue phosphorescent organic lightemitting diodes, J. Mater. Chem., 21, 5638-5644 (2011). 

  26. S. O. Jeon, S. E. Jang, H. S. Son, and J. Y. Lee, External quantum efficiency above 20% in deep blue phosphorescent organic light-emitting diodes, Adv. Mater., 23, 1436-1441 (2011). 

  27. S. H. Jeong and J. Y. Lee, Dibenzothiophene derivatives as host materials for high efficiency in deep blue phosphorescent organic light emitting diodes, J. Mater. Chem., 21, 14604-14609 (2011). 

  28. S. H. Jeong, C. W. Seo, J. Y. Lee, N. S. Cho, J. K. Kim, and J. H. Yang, Comparison of bipolar hosts and mixed-hosts as host structures for deep blue phosphorescent organic light emitting diodes, Chem. Asia J., 6, 2895-2898 (2011). 

  29. R. J. Holmes, B. W. D. Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Efficient, deep-blue organic electroluminescence by guest charge trapping, Appl. Phys. Lett., 83, 3818-3820 (2003). 

  30. X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, and M. E. Thompson, Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices, Chem. Mater., 16, 4743-4747 (2004). 

  31. J. Zhuang, W. Li, W. Su, Y. Liu, Q. Shen, L. Liao, and M. Zhou, Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(III) complex as a sky-blue dopant, Org. Electron., 14, 2596-2601 (2013). 

  32. S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang, S. K. Kwon, J. J. Kim, and Y. H. Kim, Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes, J. Am. Chem. Soc., 135, 14321-14328 (2013). 

  33. C. Fan, L. Zhu, B. Jiang, Y. Li, F. Zhao, D. Ma, J. Qin, and C. Yang, High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo[d]thiazole ligands, J. Phys. Chem. C, 117, 19134-19141 (2013). 

  34. J. H. Jou, Y. X. Lin, S. H. Peng, C. J. Li, Y. M. Yang, C. L. Chin, J. J. Shyue, S. S. Sun, M. Lee, C. T. Chen, M. C. Liu, C. C. Chen, G. Y. Chen, J. H. Wu, C. H. Li, C. F. Sung, M. J. Lee, and J. P. Hu, Highly efficient yellow organic light emitting diode with a novel wet- and dry-process feasible iridium complex emitter, Adv. Funct. Mater., 24, 555-562 (2014). 

  35. S. L. Lai, W. Y. Tong, S. C. F. Kui, M. Y. Chan, C. C. Kwok, and C. M. Che, High efficiency white organic light-emitting devices incorporating yellow phosphorescent platinum(II) complex and composite blue host, Adv. Funct. Mater., 23, 5168-5176 (2013). 

  36. G. Cheng, S. C. F. Kui, W. H. Ang, M. Y. Ko, P. K. Chow, C. L. Kwong, C. C. Kwok, C. Ma, X. Guan, K. H. Low, S. J. Su and C. M. Che, Structurally robust phosphorescent [Pt(O^N^C^N)] emitters for high performance organic light-emitting devices with power efficiency up to 126 lm $W^{-1}$ and external quantum efficiency over 20%, Chem. Sci., 5, 4819-4830 (2014). 

  37. H. Cao, G. Shan, X. Wen, H. Sun, Z. Su, R. Zhong, W. Xie, P. Lia, and D. Zhua, An orange iridium(III) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic light-emitting diodes, J. Mater. Chem. C, 1, 7371-7379 (2013). 

  38. R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, and J. Li, Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes, Adv. Mater., 23, 2823-2827 (2011). 

  39. R. Wang, D. Liu, R. Zhang, L. Deng, and J. Li, Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes, J. Mater. Chem., 22, 1411-1417 (2012). 

  40. M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar, and A. P. Monkman, Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(III) complexes of carbazole- based ligands: synthetic, photophysical, computational and high efficiency OLED studies, J. Mater. Chem., 22, 6419-6428 (2012). 

  41. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, J. Am. Chem. Soc., 125, 12971-12979 (2003). 

  42. B. S. Du, J. L. Liao, M. H. Huang, C. H. Lin, H. W. Lin, Y. Chi, H. A. Pan, G. L. Fan, K. T. Wong, G. H. Lee, and P. T. Chou, Os(II) based green to red phosphors: A great prospect for solution processed, highly efficient organic light-emitting diodes, Adv. Funct. Mater., 22, 3491-3499 (2012). 

  43. H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, and H. Fujikake, Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes, Adv. Mater., 24, 5099-5103 (2012). 

  44. C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang, C.S. Lee, and S. T. Lee, Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives, J. Mater. Chem., 20, 1560-1566 (2010). 

  45. C. H. Wu, C. H. Chien, F. M. Hsu, P. I. Shih, and C. F. Shu, Efficient non-doped blue light-emitting diodes incorporating an anthracene derivative end-capped with fluorene groups, J. Mater. Chem., 19, 1464-1470 (2009). 

  46. S. Tao, Y. Zhou, C. S. Lee, S. T. Lee, D. Huang, and X. Zhang, Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives, J. Phys. Chem. C, 112, 14603-14606 (2008). 

  47. K. H. Lee, Y. S. Kwon, J. Y. Lee, S. Kang, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, Highly efficient blue organic light-emitting diodes based on 2-(diphenylamino)fluoren-7-ylvinylarene derivatives that bear a tert-butyl group, Chem. Eur. J., 17, 12994-13006 (2011). 

  48. K. H. Lee, L. K. Kang, J. Y. Lee, S. Kang, S. O. Jeon, K. S. Yook, J. Y. Lee, and S. S. Yoon, Molecular engineering of blue fluorescent molecules based on silicon end-capped diphenylaminofluorene derivatives for efficient organic light-emitting materials, Adv. Funct. Mater., 20, 1345-1358 (2010). 

  49. Y. M. Jeon, J. Y. Lee, J. W. Kim, C. W. Lee, and M. S. Gong, Deep-blue OLEDs using novel efficient spiro-type dopant materials, Org. Electron., 11, 1844-1852 (2010). 

  50. Y. Zou, J. Zou, T. Ye, H. Li, C. Yang, H. Wu, D. Ma, J. Qin, and Y. Cao, Unexpected propeller-like Hexakis fluoren-2-yl)benzene cores for six-arm star-shaped oligofluorenes: Highly efficient deep-blue fluorescent emitters and good hole-transporting materials, Adv. Funct. Mater., 23, 1781-1788 (2013). 

  51. K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen, and C. H. Cheng, The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices, Adv. Funct. Mater., 18, 67-75 (2008). 

  52. K. L. Chan, J. P. F. Lim, X. Yang, A. Dodabalapur, G. E. Jabbour, and A. Sellinger, High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold, Chem. Commun., 48, 5106-5108 (2012). 

  53. B. Wei, J. Z. Liu, Y. Zhang, J. H. Zhang, H. N. Peng, H. L. Fan, Y. B. He, and X. C. Gao, stable, glassy, and versatile binaphthalene derivatives capable of efficient hole transport, hosting, and deep-blue light emission, Adv. Funct. Mater., 20, 2448-2458 (2010). 

  54. C. J. Kuo, T. Y. Li, C. C. Lien, C. H. Liu, F. I. Wu, and M. J. Huang, Bis(phenanthroimidazolyl)bisphenyl derivatives as saturated blue emitters for electroluminescent devices, J. Mater. Chem., 19, 1865-1871 (2009). 

  55. Y. Park, J. H. Lee, D. H. Jung, S. H. Liu, Y. H. Lin, L. Y. Chen, C. C. Wu, and J. Park, An aromatic imine group enhances the EL efficiency and carrier transport properties of highly efficient blue emitter for OLEDs, J. Mater. Chem., 20, 5930-5936 (2010). 

  56. S. L. Lin, L. H. Chan, R. H. Lee, M. Y. Yen, W. J. Kuo, C. T. Chen, and R. J. Jeng, Highly efficient carbazole- ${\pi}$ -dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes, Adv. Mater., 20, 3947-3952 (2008). 

  57. W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, and Y. Ma, A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence, Adv. Funct. Mater., 22, 2797-2803 (2012). 

  58. T. Peng, K. Ye, Y. Liu, L. Wang, Y. Wu, and Y. Wang, Novel Beryllium complex as the non-doped emitter for highly efficient deep-blue organic light-emitting diode, Org. Electron., 12, 1914-1919 (2011). 

  59. H. Kuma, Y. Jinde, M. Kawamura, H. Yamamoto, T. Arakane, K. Fukuoka, and C. Hosokawa, Highly efficient white OLEDs using RGB fluorescent materials, Proceedings of Society for Information Display. May 20-25, California, USA (2007). 

  60. Y. Yang, R. T. Farley, T. T. Steckler, S. H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers, J. Appl. Phys., 106, 044509-044509-7 (2009). 

  61. J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, and C. Adachi, Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a Heptazine derivative, Adv. Mater. 25, 3319-3323 (2013). 

  62. Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T. Shibata, and C. Adachi, Anthraquinone-based intramolecular charge-transfer compounds: Computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence, J. Am. Chem. Soc., 136, 18070-18081 (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로