$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

대진폭 전단유동장에서 잔탄검 농후계의 비선형 점탄성 거동 연구: 응력파형 및 Lissajous 패턴 해석
Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis

한국섬유공학회지 = Textile science and engineering, v.53 no.5, 2016년, pp.328 - 339  

안혜진 (부산대학교 공과대학 유기소재시스템공학과) ,  국화윤 (넥센타이어 중앙연구소 OE개발3팀) ,  이지석 (부산대학교 공과대학 유기소재시스템공학과) ,  송기원 (부산대학교 공과대학 유기소재시스템공학과)

Abstract AI-Helper 아이콘AI-Helper

The objective of the present study is to phenomenologically characterize the nonlinear rheological behavior of concentrated xanthan gum systems in large amplitude oscillatory shear (LAOS) flow fields by means of stress waveform and Lissajous pattern analysis. Using an Advanced Rheometric Expansion S...

주제어

참고문헌 (69)

  1. F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, "Xanthan Gum : Production, Recovery, and Properties", Biotechnol. Adv., 2000, 18, 549-579. 

  2. E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams, "A Rheological Study of the Order-Disorder Conformational Transition of Xanthan Gum", Biopolymers, 2001, 59, 339-346. 

  3. M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy, "Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature", Food Res. Int., 2001, 34, 695-703. 

  4. J. Ahmed and H. S. Ramaswamy, "Effect of High-Hydrostatic Pressure and Concentration on Rheological Characteristics of Xanthan Gum", Food Hydrocolloids, 2004, 18, 367-373. 

  5. R. Lapasin and S. Pricl, "Rheology of Industrial Polysaccharides: Theory and Applications", Aspen Publishers, Gaithersburg, MD, 1999. 

  6. B. Urlacher and O. Noble in "Thickening and Gelling Agents for Food-Xanthan", A. Imeson Ed., Chapman & Hall, London, 1997, pp.284-311. 

  7. J. N. BeMiller and K. C. Huber in "Food Chemistry-Carbohydrates", S. Damodaran, K. L. Parkin, and O. R. Fennema Eds., CRC Press, Boca Raton, 2008, pp.83-154. 

  8. H. Schott in "Remington's Pharmaceutical Sciences-Colloidal Dispersions", A. R. Gennaro and G. D. Chase Eds., Mack, Philadelphia, 1985, pp.286-289. 

  9. K. S. Kang and D. J. Pettit in "Industrial Gums", R. L. Whistler and J. N. Be Miller Eds., 3rd Ed., Academic Press, New York, 1993, pp.341-398. 

  10. A. Palaniraj and V. Jayaraman, "Production, Recovery and Applications of Xanthan Gum by Xanthomonas Campestris", J. Food. Eng., 2011, 106, 1-12. 

  11. H. Y. Jang, K. Zhang, B. H. Chon, and H. J. Choi, "Enhanced Oil Recovery Performance and Viscosity Characteristics of Polysaccharide Xanthan Gum Solution", J. Ind. Eng. Chem., 2015, 21, 741-745. 

  12. J. Huang, B. Yan, A. Faghihnejad, H. Xu, and H. Zeng, "Understanding Nanorheology and Surface Forces of Confined Thin Films", Korea-Aust. Rheol. J., 2014, 26, 3-14. 

  13. P. J. Whitcomb and C. W. Macosko, "Rheology of Xanthan Gum", J. Rheol., 1978, 22, 493-505. 

  14. W. E. Rochefort and S. Middleman, "Rheology of Xanthan Gum : Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments", J. Rheol., 1987, 31, 337-369. 

  15. K. C. Tam and C. Tiu, "Steady and Dynamic Shear Properties of Aqueous Polymer Solutions", J. Rheol., 1989, 33, 257-280. 

  16. M. Milas, M. Rinaudo, M. Knipper, and J. L. Schuppiser, "Flow and Viscoelastic Properties of Xanthan Gum Solutions", Macromolecules, 1990, 23, 2506-2511. 

  17. A. B. Rodd, J. J. Cooper-White, D. E. Dunstan, and D. V. Boger, "Gel Point Studies for Chemically-Modified Biopolymer Networks Using Small Amplitude Oscillatory Rheometry", Polymer, 2001, 42, 185-198. 

  18. N. B. Wyatt and M. W. Liberatore, "Rheology and Viscosity Scaling of the Polyelectrolyte Xanthan Gum", J. Appl. Polym. Sci., 2009, 114, 4076-4084. 

  19. E. Choppe, F. Puaud, T. Nicolai, and L. Benyahia, "Rheology of Xanthan Solutions as a Function of Temperature, Concentration and Ionic Strength", Carbohydr. Polym., 2010, 82, 1228-1235. 

  20. L. Xu, G. Xu, T. Liu, Y. Chen, and H. Gong, "The Comparison of Rheological Properties of Aqueous Welan Gum and Xanthan Gum Solutions", Carbohydr. Polym., 2013, 92, 516-522. 

  21. A. Giboreau, G. Cuvelier, and B. Launay, "Rheological Behavior of Three Biopolymer/Water Systems with Emphasis on Yield Stress and Viscoelastic Properties", J. Texture Stud., 1994, 25, 119-137. 

  22. R. Pal, "Oscillatory, Creep and Steady Flow Behavior of Xanthan-Thickened Oil-in-Water Emulsions", AIChE J., 1995, 41, 783-794. 

  23. L. Ma and G. V. Barbosa-Canovas, "Viscoelastic Properties of Xanthan Gels Interacting with Cations", J. Food Sci., 1997, 62, 1124-1128. 

  24. R. K. Richardson and S. B. Ross-Murphy, "Nonlinear Viscoelasticity of Polysaccharide Solutions. 2 : Xanthan Polysaccharide Solutions", Int. J. Biol. Macromol., 1987, 9, 257-264. 

  25. T. Lim, J. T. Uhl, and R. K. Prudhomme, "Rheology of Self-Associating Concentrated Xanthan Solutions", J. Rheol., 1984, 28, 367-379. 

  26. M. M. Santore and R. K. Prudhomme, "Rheology of a Xanthan Broth at Low Stresses and Strains", Carbohydr. Polym., 1990, 12, 329-335. 

  27. K. W. Song, Y. S. Kim, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior", Fiber. Polym., 2006, 7, 129-138. 

  28. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81. 

  29. F. Garcia-Ochoa and E. Gomez, "Mass Transfer Coefficient in Stirred Tank Reactors for Xanthan Gum Solutions", Biochem. Eng. J., 1998, 1, 1-10. 

  30. J. A. Casas, V. E. Santos, and F. Garcia-Ochoa, "Xanthan Gum Production under Several Operational Conditions : Molecular Structure and Rheological Properties", Enzyme Microb. Technol., 2000, 26, 282-291. 

  31. J. S. Lee, Y. S. Kim, and K. W. Song, "Transient Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Start-Up Shear Flow Fields : An Experimental Study Using a Strain-Controlled Rheometer", Korea-Aust. Rheol. J., 2015, 27, 227-239. 

  32. J. S. Lee and K. W. Song, "Time-Dependent Rheological Behavior of Natural Polysaccharide Xanthan Gum Solutions in Interrupted Shear and Step-Incremental/Reductional Shear Flow Fields", Korea-Aust. Rheol. J., 2015, 27, 297-307. 

  33. K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. 

  34. X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. 

  35. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. 

  36. K. S. Cho, J. W. Kim, J. E. Bae, J. H. Youk, H. J. Jeon, and K. W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions", Korea-Aust. Rheol. J., 2015, 27, 151-161. 

  37. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183. 

  38. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. 

  39. K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. 

  40. G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. 

  41. E. K. Park and K. W. Song, "Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations with Respect to Rubbing onto the Human Body", Korea-Aust. Rheol. J., 2010, 22, 279-289. 

  42. M. S. Kwak, H. J. Ahn, and K. W. Song, "Rheological Investigation of Body Cream and Body Lotion in Actual Application Conditions", Korea-Aust. Rheol. J., 2015, 27, 241-251. 

  43. H. S. Melito, C. R. Daubert, and E. A. Foegeding, "Relationships between Nonlinear Viscoelastic Behavior and Rheological, Sensory and Oral Processing Behavior of Commercial Cheese", J. Texture Stud., 2013, 44, 253-288. 

  44. J. A. Carmona, P. Ramirez, N. Calero, and J. Munoz, "Large Amplitude Oscillatory Shear of Xanthan Gum Solutions : Effect of Sodium Chloride (NaCl) Concentration", J. Food Eng., 2014, 126, 165-172. 

  45. B. T. Stokke, B. E. Christensen, and O. Smidsrod in "Polysaccharides : Structural Diversity and Functional Versatility-Macromolecular Properties of Xanthan", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.433-472. 

  46. B. Katzbauer, "Properties and Applications of Xanthan Gum", Polym. Degrad. Stabil., 1998, 59, 81-84. 

  47. G. Holzwarth and E. B. Prestridge, "Multistranded Helix in Xanthan Polysaccharide", Science, 1977, 197, 757-759. 

  48. T. A. Camesano and K. J. Wilkinson, "Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy", Biomacromolecules, 2001, 2, 1184-1191. 

  49. K. Ogawa and T. Yui in "Polysaccharides : Structural Diversity and Functional Versatility-X-ray Diffraction Study of Polysaccharides", S. Dumitriu Ed., Marcel Dekker, New York, 1998, pp.101-130. 

  50. K. Born, V. Langendorff, and P. Boulenguer, "Biopolymers", Vol. 5, Wiley-Interscience, New York, 2001. 

  51. M. A. Zirnsak, D. V. Boger, and V. Tirtaatmadja, "Steady Shear and Dynamic Rheological Properties of Xanthan Gum Solutions in Viscous Solvents", J. Rheol., 1999, 43, 627-650. 

  52. M. S. Chun, C. Kim, and D. E. Lee, "Conformation and Translational Diffusion of a Xanthan Polyelectrolyte Chain : Brownian Dynamics Simulation and Single Molecule Tracking", Phys. Rev. E., 2009, 79, 051919. 

  53. M. S. Chun and M. J. Ko, "Rheological Correlations of Relaxation Time for Finite Concentrated Semiflexible Polyelectrolytes in Solvents", J. Kor. Phys. Soc., 2012, 61, 1108-1113. 

  54. M. S. Chun and O. O. Park, "On the Intrinsic Viscosity of Anionic and Nonionic Rodlike Polysaccharide Solutions", Macromol. Chem. Phys., 1994, 195, 701-711. 

  55. G. S. Chang, J. S. Koo, and K. W. Song, "Wall Slip of Vaseline in Steady Shear Rheometry", Korea-Aust. Rheol. J., 2003, 15, 55-61. 

  56. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990. 

  57. A. J. Giacomin and J. M. Dealy in "Techniques in Rheological Measurement : Large-Amplitude Oscillatory Shear", A. A. Collyer Ed., Chapman & Hall, London, 1993, pp.99-121. 

  58. T. Neidhofer, M. Wilhelm, and B. Debbaut, "Fourier-Transform Rheology Experiments and Finite-Element Simulations on Linear Polystyrene Solutions", J. Rheol., 2003, 47, 1351-1371. 

  59. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Nonlinear Response of Complex Fluids under LAOS (Large Amplitude Oscillatory Shear) Flow", Korea-Aust. Rheol. J., 2003, 15, 97-105. 

  60. C. O. Klein, H. W. Spiess, A. Calin, C. Balan, and M. Wilhelm, "Separation of the Nonlinear Oscillatory Response into a Superposition of Linear, Strain Hardening, Strain Softening, and Wall Slip Response", Macromolecules, 2007, 40, 4250-4259. 

  61. W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334. 

  62. T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc, Rheol., 1975, 19, 595-615. 

  63. M. Wilhelm, D. Maring, and H. W. Spiess, "Fourier-Transform Rheology", Rheol. Acta, 1998, 37, 399-405. 

  64. M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356. 

  65. M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhofer, and H.W. Spiess, "The Crossover between Linear and Nonlinear Mechanical Behavior in Polymer Solutions as Detected by Fourier-Transform Rheology", Rheol. Acta, 2000, 39, 241-246. 

  66. M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mat. Eng., 2002, 287, 83-105. 

  67. H. Kim, K. Hyun, D. J. Kim, and K. S. Cho, "Comparison of Interpretation Methods for Large Amplitude Oscillatory Shear Response", Korea-Aust. Rheol. J., 2006, 18, 91-98. 

  68. R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear", J. Rheol., 2008, 52, 1427-1458. 

  69. W. Yu, P. Wang, and C. Zhou, "General Stress Decomposition in Nonlinear Oscillatory Shear Flow", J. Rheol., 2009, 53, 215-238. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로