$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems 원문보기

ETRI journal, v.38 no.6, 2016년, pp.1031 - 1041  

Lee, Juyul (5G Giga Communication Research Laboratory, ETRI) ,  Liang, Jinyi (5G Giga Communication Research Laboratory, ETRI) ,  Kim, Myung-Don (5G Giga Communication Research Laboratory, ETRI) ,  Park, Jae-Joon (5G Giga Communication Research Laboratory, ETRI) ,  Park, Bonghyuk (5G Giga Communication Research Laboratory, ETRI) ,  Chung, Hyun Kyu (5G Giga Communication Research Laboratory, ETRI)

Abstract AI-Helper 아이콘AI-Helper

This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • To facilitate successful system development in mmWave frequency bands that have yet to be explored for mobile cellular networks, the understanding of mmWave propagation characteristics is necessary not only for system design but also for verification and evaluation. In this study, we investigate mmWave propagation characteristics based on field measurement data used in the mmWave-based 5G cellular system of the GK-5G project. The field measurement data were collected in an urban microcellular (UMi) environment and two indoor hotspot (InH) areas at 28 GHz and 38 GHz: a downtownn area in Daejeon city was selected (for UMi) and the passenger terminals of Seoul Railway Station and Incheon International Airport were selected (for InH).

가설 설정

  • In this study, we consider these issues by investigating mmWave propagation characteristics and channel models, specifically targeting mobile cellular networks.
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. ET News, Giga Korea Project Begins, Accessed Jan. 2011. http://english.etnews.com/20110128200002 

  2. T.S. Rappaport et al., Millimeter Wave Wireless Communications, Boston, MA, USA: Prentice Hall, 2014. 

  3. J. Lee et al., "mmWave Cellular Mobile Communication for Giga Korea 5G Project," Proc. Asia-Pacific Conf. Commun., Kyoto, Japan, Oct. 14-16, 2015, pp. 179-183. 

  4. T.S. Rappaport et al., "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!," IEEE Access, vol. 1, May 2013, pp. 335-349. 

  5. G.R. MacCartney Jr. et al., "Millimeter-Wave Omnidirectional Path Loss Data for Small Cell 5G Channel Modeling," IEEE Access, vol. 3, Aug. 2015, pp. 1573-1580. 

  6. S. Sun et al., "Synthesizing Omnidirectional Antenna Patterns, Received Power and Path Loss from Directional Antennas for 5G Millimeter-Wave Communications," IEEE Global Conmmun. Conf., San Diego, CA, USA, Dec. 6-10, 2015, pp. 1-7. 

  7. S. Hur et al., "Wideband Spatial Channel Model in an Urban Cellular Environments at 28 GHz," European Conf. Antennas Propag., Apr. 13-17, 2015, pp. 1-5. 

  8. M. Peter, W. Keusgen, and R.J. Weiler, "On Path Loss Measurement and Modeling for Millimeter-Wave 5G," European Conf. Antennas Propag., Lisbon, Portugal, Apr. 13-17, 2015, pp. 1-5. 

  9. A.I. Sulyman et al., "Radio Propagation Path Loss Models for 5G Cellular Networks in the 28 GHz and 38 GHz Millimeter-Wave Bands," IEEE Commun. Mag., vol. 52, no. 9, 2014, pp. 78-86. 

  10. A.F. Molisch and F. Tufvesson, "Propagation Channel Models for Next-Generation Wireless Communication Systems," IEICE Trans. Commun., vol. E97-B, no. 10, Oct. 2014, pp. 2022-2034. 

  11. K. Haneda, "Channel Models and Beamforming at Millimeter-Wave Frequency Bands," IEICE Trans. Commun., vol. E98-B, no. 5, May 2015, pp. 755-772. 

  12. 3GPP TR 25.996, Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations (Release 12), Sept. 2014. 

  13. 3GPP TR 36.873, Study on 3D Channel Model for LTE (Release 12), June 2015. 

  14. Rep. ITU-R M.2135-1, Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced, Dec. 2009. 

  15. B.H. Fleury et al., "Channel Parameter Estimation in Mobile Radio Environments Using the SAGE Algorithm," IEEE J. Sel. Areas Commun., vol. 17, no. 3, Mar. 1999, pp. 434-450. 

  16. X. Yin, C. Ling, and M.-D. Kim, "Experimental Multipath-Cluster Characteristics of 28-GHz Propagation Channel," IEEE Access, vol. 3, 2015, pp. 3138-3150. 

  17. M.K. Samimi and T.S. Rappaport, "Local Multipath Model Parameters for Generating 5G Millimeter-Wave 3GPP-Like Channel Impulse Response," European Conf. Antennas Propag., Davos, Switzerland, Apr. 10-15, 2016, pp. 1-5. 

  18. V. Nurmela et al., "METIS Channel Models," FP7 METIS, Deliverable D1.4 ICT-317669-METIS/D1.4, Feb. 2015. 

  19. MiWEBA, D5.1: Channel Modeling and Characterization, June 2014. 

  20. Aalto University et al., "5G Channel Models for Bands up to 100 GHz," White Paper Rev. 2.0, Accessed Mar. 2016. http://www.5gworkshops.com/5GCM.html 

  21. K. Haneda et al., "5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments," IEEE Veh. Technol. Conf., Nanjing, China, May 15-18, 2016, pp. 1-7. 

  22. K. Haneda et al., "Indoor 5G 3GPP-like Channel Models for Office and Shopping Mall Environments," IEEE Int. Conf. Commun. Workshop, Kuala Lumpur, Malaysia, May 23-27, 2016, pp. 1-6. 

  23. ITU, "Provisional Final Acts," The World Radiocommunication Conference (WRC-15): Resolution COM 6/20, Nov. 2015. 

  24. D.C. Cox, "Delay Doppler Characteristics of Multipath Propagation at 910 MHz in a Suburban Mobile Radio Environment," IEEE Trans. Antennas Propag., vol. 20, no. 5, Sept. 1972, pp. 625-635. 

  25. H.-K. Kwon, M.-D. Kim, and Y.-J. Chong, "Implementation and Performance Evaluation of mmWave Channel Sounding System," IEEE Int. Symp. Antennas Propag. USNC/URSI Radio Sci. Meeting, Vancouver, Canada, July 2015, pp. 1011-1012. 

  26. Rep. ITU-R M.2376-0, Technical Feasibility of IMT in Bands Above 6 GHz, July 2015. 

  27. Rep. ITU-R M.2292-0, Characteristics of Terrestrial IMT-Advanced Systems for Frequency Sharing/interference Analysis, Dec. 2013. 

  28. H.L. Bertoni, Radio Propagation for Modern Wireless Systems, Upper Saddle River, NJ, USA: Prentice Hall, 2000. 

  29. S. Sun et al., "Path Loss, Shadow Fading, and Line-of-Sight Probability Models for 5G Urban Macro-Cellular Scenarios," Proc. IEEE Globecom Workshop, San Diego, CA, USA, Dec. 6-10, 2015. 

  30. P. Kyosti et al., WINNER II Channel Models, Sept. 2007. 

  31. COST-231, Digital Mobile Radio Toward Future Generation Systems, European Cooperation in Scientific and Technical Research, Bruxelles, 1999. 

  32. Rec. ITU-R P.1411-8, Propagation Data and Prediction Methods for the Planning of Short-Range Outdoor Radiocommunication Systems and Radio Local area Networks in the Frequency Range 300 MHz to 100 GHz, July 2015. 

  33. S. Sun et al., "Millimeter-Wave Distance-Dependent Large-Scale Propagation Measurements and Path Loss Models for Outdoor and Indoor 5G Systems," European Conf. Antennas Propag., Davos, Switzerland, Apr. 10-15, 2016, pp. 1-5. 

  34. S. Sun et al., "Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios," IEEE Veh. Technol. Conf., Nanjing, China, May 15-18, 2016, pp. 1-6. 

  35. A. Goldsmith, Wireless Communications, New York, USA: Cambridge University Press, 2005. 

  36. D. Tse and P. Viswanath, Fundamentals of Wireless Communication, New York, USA: Cambridge University Press, 2005. 

  37. X. Wu et al., "28 GHz Indoor Channel Measurements and Modelling in Laboratory Environment Using Directional Antennas," European Conf. Antennas Propag., Lisbon, Portugal, Apr. 13-17, 2015, pp. 1-5. 

  38. ITU-R Rec. P.1407-5, Multipath Propagation and Parameterization of Its Characteristics, Sept. 2013. 

  39. N. Czink et al., "Cluster Characteristics in a MIMO Indoor Propagation Environment," IEEE Trans. Wireless Commun., vol. 6, no. 4, Apr. 2007, pp. 1465-1475. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로