$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Radiolabeling of nanoparticle for enhanced molecular imaging 원문보기

Journal of radiopharmaceuticals and molecular probes : JRMP = 대한방사성의약품학회지, v.3 no.2, 2017년, pp.103 - 112  

Kim, Ho Young (Department of Nuclear Medicine, Seoul National University College of Medicine) ,  Lee, Yun-Sang (Department of Nuclear Medicine, Seoul National University Hospital) ,  Jeong, Jae Min (Department of Nuclear Medicine, Seoul National University College of Medicine)

Abstract AI-Helper 아이콘AI-Helper

The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle shou...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 다만, 나노입자에 방사성동위원소를 도입하는 것은 여러 어려움이 있고 적절한 방사성동위원소를 고르는 것 역시 쉬운 일이 아니다. 여기서는 나노입자에 적용할 수 있는 방사성동위원소와 그 표지 방법에 대해 알아보았다. 새로운 나노물질의 개발과 함께 목적에 맞는 적절한 방사성동위원소를 조합할 수 있다면 향후 연구나 환자 사용에 큰 도움이 될 것으로 기대된다.
  • 그러나 실용적인 측면에서 보면, 단지 몇 개의 방사성 핵종 만이 바이오 기술 분야에서 실제 적용이 가능하다. 지금부터는 나노의학의 맥락에서 가장 관련이 있는 양전자 혹은 감마선 방출 핵종의 표지에 대한 생산 공정 및 화학적 가능성과 같은 물리적 특성에 대해 알아보도록 하겠다.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Phelps ME. PET: The merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661-681. 

  2. Madsen MT. Recent advances in SPECT Imaging. J Nucl Med 2007;48:661-673. 

  3. Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev 2008;108:1501-1516. 

  4. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003;2:123-131. 

  5. Schubiger PA, Lehmann L, Friebe M. (Eds.) PET chemistry: The driving force in molecular imaging. Springer-Verlag, Berlin-Heidelberg; 2007. p.6 

  6. Saha GB. Fundamentals of nuclear pharmacy. 5th Ed. New York: Springer-Verlag; 2003. p. 60-61. 

  7. Guillaume M, Luxen A, Nebeling B, Argentini M, Clark JC, Pike VW. Recommendations for fluorine-18 production. Appl Radiat Isot 1991;42:749-762. 

  8. Visser GWM. Bakker, CNM. Herscheid, JDM. Brinkman, G. Hoekstra, A. The chemical properties of [ $^{18}F$ ]- acetylhypofluorite in acetic acid solution. J Label compd Radiopharm 1984;21:1226. 

  9. Oberdorfer F, Hofmann E, Marier-Brost W. Preparation of 18F-labelled N-fluoropyridinium triflate. J Label compd Radiopharm 1988;25:999-1005. 

  10. Satyamurthy N, Bida GT, Phelps ME, Barrio JR. N-[18F] Fluoro-N-alkylsulfonamides: novel reagents for mild and regioselective radiofluorination. Int J Rad Appl Instrum A. 1990;41:733-7388. 

  11. Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, et al. Radiosynthesis and evaluation of [18F]selectfluor bis(triflate). Angew Chem Int Ed Engl 2010;49:6821-6824. 

  12. Koslowsky I, Mercer J, Wuest F. Synthesis and application of 4-[(18) F]fluorobenzylamine: A versatile building block for the preparation of PET radiotracers. Org Biomol Chem 2010;8:4730-4735. 

  13. Haskali MB, Roselt PD, Karas JA, Noonan W, Wichmann CW, Katsifis A, Hicks, RJ, Hutton, CA. One-step radiosynthesis of 4-nitrophenyl 2-[(18)F]fluoropropionate ([(18)F]NFP); improved preparation of radiolabeled peptides for PET imaging. J Labelled Comp Radiopharm 2013;56:726-730. 

  14. Tang G, Zeng W, Yu M, Kabalka G. Facile synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([ $^{18}F$ ]SFB) for protein labeling. J Label compd Radiopharm 2008;51:68-71. 

  15. Berndt M, Pietzsch J, Wuest F. Labeling of low-density lipoproteins using the 18F-labeled thiol-reactive reagent N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl] maleimide. Nucl Med Biol 2007;34:5-15. 

  16. Cai W, Zhang X, Wu Y, Chen X. A Thiol-Reactive 18F-Labeling agent, N-[2-(4-18F-fluorobenzamido)Ethyl] maleimide, and synthesis of RGD peptide-based tracer for PET Imaging of alpha v beta 3 integrin expression. J Nucl Med 2006;47:1172-1180. 

  17. Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 2015;26:1-18. 

  18. Rojas S, Gispert JD, Menchon C, Baldovi HG, Buaki- Sogo M, Rocha M, Abad S, Victor VM, Garcia H, Herance JR. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography. J of Nanopart Res 2015;17:131. 

  19. Kondo K, Lambrecht RM, Wolf AP. Iodine-123 production for radiopharmaceuticals-XX excitation functions of the 124Te(p, 2n)123I and 124Te(p, n)124I reactions and the effect of target enrichment on radionuclidic purity.. Int J Appl Radiat Isot 1977;28:395-401. 

  20. Lambrecht RM, Sajjad M, Qureshi MA, Al-Tanbawi SJ. Production of iodine-124. J Radioanal Nucl Chem Letters 1988;127:143-150. 

  21. Braghirolli AM, Waissmann W, da Silva JB, dos Santos GR. Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 2014;90:138-148. 

  22. Oliver SCN, Leu MY, DeMarco JJ, Chow PE, Lee SP, McCannel TA. Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma. Arch Ophthalmol 2010;128:888-893. 

  23. Min JJ, Chung JK, Lee YJ, Jeong JM, Lee DS, Jang JJ, Lee MC, Cho BY. Relationship between expression of the sodium/iodide symporter and 131I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med 2001;28:639-645. 

  24. McConahey PJ, Dixon FJ. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol 1966;29:185-189. 

  25. Fraker PJ, Speck JC. Protein and cell membrane iodinations with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3a,6adiphenylglycoluril 1978. Biochem Biophys Res Commun 2012;425:510-518. 

  26. Bolton AE, Hunter WM. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 1973;133:529-539. 

  27. Saha GB. Fundamentals of Nuclear Pharmacy. 5th Ed. New York. Springer-Verlag; 2003. p. 127-128. 

  28. Shao X, Agarwal A, Rajian JR, Kotov NA, Wang X. Synthesis and bioevaluation of $^{125}$ I-labeled gold nanorods. Nanotechnology 2011;22:135102. 

  29. Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, De Leon-Rodriguez LM, Santos-Cuevas CL, Garcia- Becerra R, Medina LA, Gomez-Olivan L. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor ${\alpha}(v){\beta}(3)$ expression. Bioconjug Chem 2011;22(5):913-922. 

  30. Torres Martin de Rosales R, Tavare R, Glaria A, Varma G, Protti A, Blower PJ. ( $^{99}m$ )Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 2011;22:455-465. 

  31. van der Walt TN, Vermeulen C. Thick targets for the production of some radionuclides and the chemical processing of these targets at iThemba LABS. Nuclear Instruments and Methods in Physics Research Section A 2004;521:171-175. 

  32. Loc'H C, Maziere B, Comar D, Knipper R. A new preparation of germanium 68. Int J Appl Radiat Isot 1982;33:267-270. 

  33. Gleason GI. A positron cow. Int J Appl Radiat Isot 1960;8:90-94. 

  34. Yano Y, Anger HO. A GALLIUM-68 POSITRON COW FOR MEDICAL USE. J Nucl Med 1964;5:484-487. 

  35. Schuhmacher J, Marier-Brost W. A new $^{68}Ge$ / $^{68}Ga$ radioisotope generator system for production of $^{68}Ga$ in dilute HCl. Int J Appl Radiat Isot 1981;32:31-36. 

  36. Little FE, Lagunas-Solarm MC. Cyclotron production of $^{67}Ga$ . Cross sections and thick-target yields for the $^{67}Zn$ (P,n) and $^{68}Zn$ (p,2n) reactions. Int J Appl Radiat Isot 1983;34:631-637. 

  37. Steyn J, Meyer BR. Production of $^{67}Ga$ by deuteron bombardment of natural zinc. Int J Appl Radiat Isot 1973;24:369-372. 

  38. Shetty D, Lee YS, Jeong JM. (68)Ga-labeled radiopharmaceuticals for positron emission tomography. Nucl Med Mol Imaging 2010;44:233-240. 

  39. Shetty D, Choi SY, Jeong JM, Hoigebazar L, Lee Y-S, Lee DS, Chung JK, Lee MC, Chung YK. Formation and characterization of gallium(III) complexes with monoamide derivatives of 1,4,7-triazacyclononane-1,4,7-triacetic acid: A study of the dependency of structure on reaction pH. Eur J Inorg Chem 2010;34:5432-5438. 

  40. Lee YK, Jeong JM, Hoigebazar L, Yang BY, Lee YS, Lee BC, Youn H, Lee DS, Chung JK, Lee MC. Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J Nucl Med 2012;53:1462-1470. 

  41. Szelecsenyi F, Blessing G, Qaim SM. Excitation functions of proton induced nuclear reactions on enriched $^{61}Ni$ and $^{64}Ni$ : Possibility of production of no-carrier-added $^{61}Cu$ and $^{64}Cu$ at a small cyclotron. Appl Radiat Isot 1993;44:575-580. 

  42. Xie H, Wang ZJ, Bao A, Goins B, Phillips WT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 2010;395:324-330. 

  43. Chen K, Li Z-B, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 2008;35:2235-2244. 

  44. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H.. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47-52. 

  45. Wong RM, Gilbert DA, Liu K, Louie AY. Rapid sizecontrolled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 2012;6:3461-3467. 

  46. Deri MA, Ponnala S, Zeglis BM, Pohl G, Dannenberg JJ, Lewis JS, Francesconi LC. Alternative chelator for $^{89}Zr$ radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem 2014;57:4849-4860. 

  47. Richardson-Sanchez T, Tieu W, Gotsbacher MP, Telfer TJ, Codd R. Exploiting the biosynthetic machinery of streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator. Org Biomol Chem 2017;15:5719-5730. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로