$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션
Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM 원문보기

한국해안·해양공학회논문집 = Journal of Korean Society of Coastal and Ocean Engineers, v.29 no.6, 2017년, pp.286 - 304  

이광호 (가톨릭관동대학교 에너지플랜트공학과) ,  배주현 (한국해양대학교 대학원 토목환경공학과) ,  김상기 ((주)유주) ,  김도삼 (한국해양대학교 건설공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 어항 등과 같은 소규모 항에서 적용 가능한 격자블록결속에 의한 신형식의 원형유공케이슨을 제안하고, 이러한 방파제의 수리특성을 수치적으로 검토하였다. 본 연구에서 적용한 수치해석 코드는 최근들어 다양한 분야에서 공학적 문제해결을 위해 그 사용예가 급증하고 있는 공중사용허가서(오픈소스 기반) 라이선스 기반의 OpenFOAM(Open Field Operation and Manipulation)에 조파모듈, 투과층 해석모듈, 및 반사파 제어기능 등을 추가한 OLAFOAM을 적용하였다. 본 연구는 먼저, 1) 규칙파 하 3차원슬리트케이슨 방파제에서 파의 파압변동에 대해 기존의 실험 결과와 비교 검토하고, 2) 불규칙파를 조파하여 목표한 파의 재현과 주파수스펙트럼을 비교 검토하여 OLAFOAM의 타당성을 검증하였다. 이로부터 슬리트케이슨과 유사한 원형유공케이슨이 설치된 일정수심의 3차원수치파동수조에 불규칙파를 조파하여 유수실 폭과 유의파고 및 유의주기의 변화에 따른 원형유공케이슨 방파제에서 월파량, 반사율, 파압분포 및 그들의 상호연관성을 면밀히 검토 분석하였다. 이로부터 파압분포는 불투과연직벽체에 대한 Goda 식의 결과보다 매우 작은 결과를 나타내었으며, 반사율은 기존의 슬리트케이슨에서 반사율의 변동범위 내에 존재하는 것을 알 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
원형유공케이슨 방파제에 적용한 공법의 특징은 무엇인가? 본 연구에서는 전술한 유공회파블록제의 기능성을 보다 향상시킨 것으로, 어항 등과 같은 소규모 항에서 항내정온도 및 낚시와 같은 레크리에이션과 친수할동 등에서 안전을 동시에 확보할 수 있으며, 더불어 우수한 경관을 유지할 수 있는 격자블록결속에 의한 신형식의 원형유공케이슨 방파제를 개발한다. 이 방파제의 형식은 전술한 유공회파블록제에서 현장타설 말뚝으로 블록과 블록을 결속하는 공법은 동일하지만 반사율을 보다 저감시키기 위하여 유공회파블록의 배후에 슬리트케이슨 방파제와 같이 유수실을 적용한 경우이다. 여기서, 블록과 블록을 결속하여 내파안정성을 도모하는 공법은 대규모 항만의 외곽 방파제에서 케이슨과 케이슨을 뒷채움재 혹은 케이블 등으로 결속하여 장대케이슨을 계획 · 확보하는 Park et al.
월파량의 증가, 감소하는 요인은 무엇인가? (1) 월파량에 대해, 유수실 폭이 넓을수록 월파량이 감소하며, 입사파고가 클수록 또는 주기가 길수록 월파량은 증가한다.
TTP 표면에 부착되는 미끄러운 해조류로 인해 유발되는 사고는? (2017)에 따르면 2014년 실족으로 인한 추락사고가 총 95건(이 중에 사망사고는 26명), 2015년에 실족으로 인한 추락사고가 총 100여건(이 중에 사망사고는 약 20%)이 발생하였다. 이러한 안전사고는 TTP 표면에 부착되는 미끄러운 해조류에 의한 실족사고와 반사율의 저감을 위해 TTP 사이에 형성된 공극으로의 추락사고, 경우에 따라서는 사망사고로도 이어지는 불상사가 빈번히 발생하고 있다. 그리고, 매년 반복되는 폭풍파랑의 내습으로 중력식 호안 및 중력식 방파제에 피복된 TTP의 안정중량 부족으로 인한 산란과 기초지반의 세굴 등으로 인한 TTP의 활동으로 전술한 안전문제는 보다 악화되고, 또한 경관상에 악영향을 주면서 친수공간으로의 이미지가 저하되어 사용자 측면에서 악영향을 초래한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Billstein, M., Svensson, U. and Johansson, N. (1999). Development and validation of a numerical model of flow through embankment dams-comparisons with experimental data and analytical solutions. Transport in Porous Media, 35(3), 395-406. 

  2. Boivin, R. (1964). Comments on vertical breakwaters with low coefficients of reflection, The Dock and Harbour Authority, London. 

  3. Chen, L.F., Zang, J., Hillis, A.J., Morgan, G.C.J. and Plummer, A.R. (2014). Numerical investigation of wave-structure interaction using OpenFOAM. Ocean Engineering, 88, 91-109. 

  4. Chen, X.F., Li, Y.C., Ma, B.L., Jiang, J.J. and Lu, G.R. (2005). Calculating method of irregular wave pressures on components of perforated caissons with top cover. China Offshore Platform, 20(4), 1-9 (in Chinese). 

  5. Chen, X., Li, Y. and Teng, B. (2007). Numerical and simplified methods for the calculation of the total horizontal wave force on a perforated caisson with a top cover. Coastal Engineering, 54(1), 67-75. 

  6. Chen, X., Li, Y.C., Wang, Y.X., Dong, G.H. and Bai, X. (2003). Numerical simulation of wave interaction with perforated caissons breakwaters. China Ocean Engineering, 17(1), 33-43. 

  7. del Jesus, M. (2011). Three-dimensional interaction of water waves with maritime structures, University of Cantabria, Ph.D. thesis. 

  8. Engelund, F. (1953). On the laminar and turbulent flow of ground water through homogeneous sand, Transactions of the Danish Academy of Technical Sciences, 3. 

  9. Franco, C. and Franco, L. (1999). Overtopping formulas for caisson breakwaters with nonbreaking 3D waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(2), 98-108. 

  10. Fugazza, M. and Natale, L. (1992). Hydraulic design of perforated breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(1), 1-14. 

  11. Garrido, J.M. and Medina, J.R. (2012). New neural networkderived empirical formulas for estimating wave reflection on Jarlan-type breakwaters. Coastal Engineering, 62, 9-18. 

  12. Ghosal, S., Lund, T., Moin, P. and Akselvoll, K. (1995). A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mechanics, 286, 229-255. 

  13. Goda, Y. (2000). Random seas and design of maritime structures, World Scientific Publishing, Singapore. 

  14. Goda, Y. (1988). Statistical variability of sea state parameters as a function of wave spectrum. Coastal Engineering in Japan, JSCE, 31(1), 39-52. 

  15. Goda, Y. and Suzuki, Y. (1977). Estimation of incident and reflected waves in random wave experiments. ICCE-1976, ASCE, 828-845. 

  16. Higuera, P., Lara, J.L. and Losada, I.J. (2013). Realistic wave generation and active wave absorption for Navier-Stokes models: Application to OpenFOAM(R). Coastal Engineering, 71, 102-118. 

  17. Higuera, P., Lara, J.L. and Losada, I.J. (2014a). Three-dimensional interaction of waves and porous coastal structures using Open-FOAM(R). Part I: Formulation and Validation, Coastal Engineering, 83, 243-258. 

  18. Higuera, P., Lara, J.L. and Losada, I.J. (2014b). Three-dimensional interaction of waves and porous coastal structures using Open-FOAM(R). Part II: Application, Coastal Engineering, 83, 259-270. 

  19. Higuera, P., Losada, I.J. and Lara, J.L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35-47. 

  20. Horgue, P., Soulaine, C., Franc, J., Guibert, R. and Debenest, G. (2015). An open-source toolbox for multiphase flow in porous media. Computer Physics Communications, 187, 217-226. 

  21. Huang, Z., Li, Y. and Liu, Y. (2011). Hydraulic performance and wave loadings of perforated/slotted coastal structures: A review. Ocean Engineering, 38(10), 1031-1053. 

  22. Jarlan, G.E. (1961). A perforated vertical wall breakwater. Dock and Harbour Authority XII (486), 394-398. 

  23. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation toolbox for the open-source CFD library: Open-Foam(R). International Journal for Numerical Methods in Fluids, 70(9), 1073-1088. 

  24. Jensen, B., Jacobsen, N.G. and Christensen, E.D. (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. 

  25. Jiang, J.J. (2004). Experimental study on vertical wave forces acting on perforated caissons, Master Thesis. Dalian University of Technology (in Chinese). 

  26. Kim, I.C., Park, K.C. and Park, H.J. (2017). Experimental study on hydraulic performance of perforated wall breakwater with turning wave blocks. Proceedings of Coastal and Ocean Engineering in Korea, 210 (in Korean). 

  27. Kissling, K., Springer, J., Jasak, H., Schutz, S., Urban, K. and Piesche, M. (2010). A coupled pressure based solution algorithm based on the volume-of-fluid approach for two or more immiscible fluids, European Conference on Computational Fluid Dynamics, ECCOMAS CFD. 

  28. Kondo, H. (1979). Analysis of breakwaters having two porous walls, Coastal Structures-79, ASCE, Alexandria, VA, 962-977. 

  29. Lee, K.H., Bae, J.H., An, S.W., Kim, D.S. and Bae, K.S. (2016). Numerical analysis on wave characteristics around submerged breakwater in wave and current coexisting field by OLAFOAM. Journal of Korean Society of Coastal and Ocean Engineers, 28(6), 332-349 (in Korean). 

  30. Lee, K.H., Choi, H.S., Baek, D.J. and Kim, D.S. (2010). Two and three dimensional analysis about the reflection coefficient by the slit caisson and resulting wave pressure acting on the structure. Journal of Korean Society of Coastal and Ocean Engineers, 22(6), 374-386 (in Korean). 

  31. Lee, K.H., Choi, H.S., Kim, C.H., Kim, D.S. and Cho, S. (2011). The Study on the wave pressure of the tsunami acting on the permeable structure. Journal of Korean Society of Coastal and Ocean Engineers, 23(1), 79-92 (in Korean). 

  32. Li, Y.C., Chen, X.F., Sun, D.P., Liu, Y., Jiang, J.J. and Ma, B.L. (2005a). The calculation of horizontal wave forces on perforated caisson with top cover. China Offshore Platform, 20(1), 1-6 (in Chinese). 

  33. Li, Y.C., Dong, G.H., Liu, H.J. and Sun, D.P. (2003a). The reflection of oblique incident waves by breakwaters with double-layered perforated wall. Coastal Engineering, 50, 47-60. 

  34. Li, Y.C., Jiang, J.J., Ma, B.L., Sun, D.P. and Liu, Y. (2005b). Calculation of irregular wave forces acting on perforated caisson. China Offshore Platform, 20(2), 12-19 (in Chinese). 

  35. Li, Y.C., Liu, H.J. and Sun, D.P. (2003b). Analysis of wave forces induced by the interaction of oblique incident waves with partially-perforated caisson structures. Journal of Hydrodynamics Series A, 18(5), 553-563 (in Chinese). 

  36. Li, Y.C., Liu, H.J., Teng, B. and Sun, D.P. (2002). Reflection of oblique incident waves by breakwaters with partially-perforated wall. China Ocean Engineering, 16(3), 329-342. 

  37. Lin, Z., Guo, Y., Jeng, D.S., Rey, N. and Liao, C. (2015). An integrated finite element method model for wave-soil-pipeline interaction, Proceedings of IAHR. 

  38. Liu, Y., Li, Y.C., Teng, B. and Ma, B.L. (2007). Reflection of regular and Irregular waves from a partially-perforated caisson breakwater with a rockfilled core. Acta Oceanologica Sinica, 26(3), 129-141. 

  39. Liu, Y., Li, Y.C., Teng, B., Jiang, J.J. and Ma, B.L. (2008). Total horizontal and vertical forces of irregular waves on partially perforated caisson breakwaters. Coastal Engineering, 55, 537-552. 

  40. Liu, Y., Li, Y.C., Teng, B. and Jiang, J.J. (2006). Experimental and theoretical investigation of wave forces on a partially-perforated caisson breakwater with a rock filled core. China Ocean Engineering, 20(2), 179-198. 

  41. Liu, H.J. (2003). The Interaction between oblique incident waves and caisson structures with perforated wall. Doctoral Thesis, Dalian University of Technology (in Chinese). 

  42. Ma, B.L. (2004). Wave interaction with perforated vertical wall breakwater, Master Thesis. Dalian University of Technology (in Chinese). 

  43. Meringolo, D.D., Aristodemo, F. and Veltri, P. (2015). SPH numerical modeling of wave-perforated breakwater interaction. Coastal Engineering, 101, 48-68. 

  44. Oh, S.H., Ji, C.H., Lee, D.S., Oh, Y.M. and Jang, S.C. (2013). Comparison of horizontal wave forces due to regular waves acting on the single-and double-chamber caisson. Proceedings of Coastal and Ocean Engineering in Korea, 1-4 (in Korean). 

  45. Park, W.S., Won, D.H. and Seo, J.H. (2016). An interlocking caisson breakwater with fillers. Journal of Korean Society of Coastal and Ocean Engineers, 64(8), 28-32 (in Korean). 

  46. Safti, H. (2013). A numerical wave-structure-soil interaction model for monolithic breakwaters subject to breaking wave impact. Ports 2013, ASCE, 1974-1984. 

  47. Seo, J.H., Lee, J.H., Park, W.S. and Won, D.H. (2015). Dispersion characteristics of wave force on interlocking caisson breakwaters by cross cables. Journal of Korean Society of Coastal and Ocean Engineers, 27(5), 315-323 (in Korean). 

  48. Suh, K.D., Park, J.K. and Park, W.S. (2006). Wave reflection from partially perforated-wall caisson breakwater. Ocean Engineering, 33(2), 264-280. 

  49. Tabet-Aoul, E. and Lambert, E. (2003). Tentative new formula for maximum horizontal wave forces acting on perforated caisson. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 129(1), 34-40. 

  50. Tanimoto, K., Takahashi, S. and Kitatani, T. (1981). Experimental study of impact breaking wave forces on a vertical-wall caisson of composite breakwater. Report of Port and Harbour Research Institute, 20(2), 3-39. 

  51. Tanimoto, K. and Yoshimoto, Y. (1982). Theoretical and experimental study of reflection coefficient for wave dissipating caisson with a permeable front wall. Report of the Port and Harbour Research Institute, 21(3), 44-77. 

  52. Takahashi, S. (1996). Design of vertical breakwaters, Reference Document No. 34, Port and Harbour Research Institute, Japan. 

  53. Takahashi, S., Tanimoto, K. and Shimosako, S. (1992). Experimental study of impulsive pressures on composite breakwaters. Report of Port and Harbour Research Institute, 31(5), 35-74. 

  54. Tamrin, P.S., Parung, H. and Thaha, A. (2014). Experimental study of perforated concrete block breakwater. International Journal of Engineering & Technology IJET-IJENS, 14(03), 6-10. 

  55. Tanimoto, K., Haranaka, S., Takahashi, S., Komatsu, K., Todoroki, M. and Osato, M. (1976). An experimental investigation of wave reflection, overtopping and wave forces for several types of breakwaters and sea walls. Tech. Note of Port and Harbour Res. Inst, 246 (in Japanese). 

  56. Tanimoto, K. and Takahashi, S. (1994). Design and construction of caisson breakwaters-the Japanese experience. Coastal Engineering, 22, 57-77. 

  57. Teng, B., Zhang, X.T. and Ning, D.Z. (2004). Interaction of oblique waves with infinite number of perforated caissons. Ocean Engineering, 31(5), 615-632. 

  58. van Gent, M.R.A. (1995). Porous flow through rubble-mound material. J. Waterway, Port, Coastal, and Ocean Engineering, ASCE, 121(3), 176-181. 

  59. Wang, Y.X., Ren, X.Z., Dong, P. and Wang, G.Y. (2011). Threedimensional numerical simulation of wave interaction with perforated quasi-ellipse caisson. Water Science and Engineering, 4(1), 46-60. 

  60. Wroniszewski, P.A., Verschaeve, J.C. and Pedersen, G.K. (2014). Benchmarking of Navier-Stokes codes for free surface simulations by means of a solitary wave. Coastal Engineering, 91, 1-17. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로