$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

마이크로피브릴화 셀룰로오스를 이용한 바이오산업의 동향
Trends and Prospects of Microfibrillated Cellulose in Bio-industries 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.45 no.1, 2017년, pp.1 - 11  

정영훈 (경북대학교 식품공학부)

초록
AI-Helper 아이콘AI-Helper

본 논문에서는 나노셀룰로오스의 일종으로 최근 가장 주목을 받고 있는 소재인 마이크로피브릴화 셀룰로오스에 대하여 살펴보았다. 마이크로피브릴화 셀룰로오스리그노셀룰로오스계 바이오매스의 셀룰로오스에서 유래한 섬유로 풍부하고, 재생가능하며, 지속 가능한 천연 소재의 일종이다. 주로 물리적 전처리에 의해 생성되며, 나노미터에서 마이크로미터에 이르는 다양한 소섬유들의 결합으로 이루어져 있다. 이로 인해 마이크로피브릴화 셀룰로오스는 높은 표면적과, 높은 aspect ratio, 그리고 특이적인 용해성을 가지게 되고, 이는 전통적인 목재 산업 뿐만 아니라, 최신식의 식품/바이오/화학/의료 산업에 이르는 다양한 영역에의 적용 가능성을 보여주는 주요한 원인이 된다. 한편 이러한 응용력에도 불구하고, 아직 마이크로피브릴화 셀룰로오스는 제조 시 필요한 높은 에너지량과 반응성 조절의 어려움 때문에 상업적으로 많은 주목을 받지 못하고 있다. 따라서, 마이크로피브릴화 셀룰로오스의 기질에 대한 특성을 이해 및 구체화하고, 마이크로피브릴화 셀룰로오스의 피브릴화도를 선택하며, 표면의 개량을 선택적으로 조절할 수 있는 시스템을 개발하는 연구가 필요할 것이다. 마이크로피브릴화 셀룰로오스가 향후 우리나라의 산업 전반에 걸쳐 활용될 수 있기를 기대해 본다.

Abstract AI-Helper 아이콘AI-Helper

In this review, we focus on one of the most attractive biomaterials, microfibrillated cellulose (MFC). MFC, a type of nanocellulose, mainly originates from cellulose in lignocellulosic biomass. MFC represents one of incredible important natural resources due to its abundancy, renewability, and susta...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 나노셀룰로오스의 일종으로 최근 가장 주목을 받고 있는 소재인 마이크로피브릴화 셀룰로오스에 대하여 살펴보았다. 마이크로피브릴화 셀룰로오스는 리그노셀 룰로오스계 바이오매스의 셀룰로오스에서 유래한 섬유로 풍부하고, 재생가능하며, 지속 가능한 천연 소재의 일종이다.
  • 이는 앞에서 언급한 마이크로피브릴화 셀룰로오스의 넓은 표면적, 높은 aspect ratio, 그리고 특이적인 불용해성에서 기인한 마이크로피브릴화 셀룰로오스의 다재 다능한 특성 때문이다. 본 논문에서는 이를 바탕으로 가장 대표적으로 이용 가능한 몇 가지 예시를 위주로 설명하겠다.
  • 따라서, 최근의 연구는 미생물 발효를 통한 고분자물질의 직접 생산 혹은 리그노셀룰로오스에 존재하는 고분자 중합체의 추출을 통한 소재화 등의 형태로 연구 개발이 진행되고 있다. 뿐만 아니라, 이들의 효과적인 적용을 위하여 표면 반응성 및 물성을 증대시키는 연구에 초점을 맞추고 있다. 이러한 공정을 소재개량화 공정으로 일컫는다(Fig.
  • 전통적인 펄프/제지산업, 섬유산업, 및 바이오/화학산업을 기반으로 소재 개량화 연구가 각광받고 있으며, 리그노셀룰로오스에서 가장 풍부한 기질인 셀룰로오스의 나노화를 활용한 연구에 전 세계적으로 관심이 집중되고 있는 실정이다. 이에 본 논문에서는 나노셀룰로오스의 한 종류인 마이크로피 브릴화 셀룰로오스를 중심으로 그 특성과 최근의 연구개발 동향에 대하여 살펴보고, 향후 연구 및 개발 방향에 대해 고찰해 보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
마이크로피브릴화 셀룰로오스가 아직 상업적으로 많은 주목을 받지 못하는 이유는 무엇인가? 이로 인해 마이크로피브릴화 셀룰로오스는 높은 표면적과, 높은 aspect ratio, 그리고 특이적인 용해성을 가지게 되고, 이는 전통적인 목재 산업 뿐만 아니라, 최신식의 식품/바이오/화학/의료 산업에 이르는 다양한 영역에의 적용 가능성을 보여주는 주요한 원인이 된다. 한편 이러한 응용력에도 불구하고, 아직 마이크로피브릴화 셀룰로오스는 제조 시 필요한 높은 에너지량과 반응성 조절의 어려움 때문에 상업적으로 많은 주목을 받지 못하고 있다. 따라서, 마이크로피브릴화 셀룰로오스의 기질에 대한 특성을 이해 및 구체화하고, 마이크로피브릴화 셀룰로오스의 피브릴화도를 선택하며, 표면의 개량을 선택적으로 조절할 수 있는 시스템을 개발하는 연구가 필요할 것이다.
바이오매스의 활용에 대한 필요성이 높아지는 이유는 무엇인가? 최근, 석유에너지 고갈에 따른 바이오리파이너리(biorefinery) 의 필요성 확대, 에너지 독립에 대한 끊임없는 요구, 이산화탄소 배출권 확보 등 기후 변화에 대한 대응의 일환, 그리고 우리 사회에 지속성장가능성을 제공한다는 측면에서 바이오매스(biomass)의 활용에 대한 필요성은 날로 높아지고 있다 [1]. 그 중에서도 옥수수 등을 포함하는 1세대 바이오매스의 연구는 식량자원이라는 한계점을 지니고, 따라서, 2세대 리그노셀룰로오스계 바이오매스(lignocellulosic biomass)가 바이오에너지 및 바이오 화학소재 개발에 필요한 주요 대체 자원으로 일조하고 있다[2].
마이크로피브릴화 셀룰로오스는 주로 어떻게 생성되는가? 마이크로피브릴화 셀룰로오스는 리그노셀룰로오스계 바이오매스의 셀룰로오스에서 유래한 섬유로 풍부하고, 재생가능하며, 지속 가능한 천연 소재의 일종이다. 주로 물리적 전처리에 의해 생성되며, 나노미터에서 마이크로미터에 이르는 다양한 소섬유들의 결합으로 이루어져 있다. 이로 인해 마이크로피브릴화 셀룰로오스는 높은 표면적과, 높은 aspect ratio, 그리고 특이적인 용해성을 가지게 되고, 이는 전통적인 목재 산업 뿐만 아니라, 최신식의 식품/바이오/화학/의료 산업에 이르는 다양한 영역에의 적용 가능성을 보여주는 주요한 원인이 된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (79)

  1. Jung YH, Kim HK, Park HM, Park Y-C, Park K, Seo J-H, et al. 2015. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresour. Technol. 179: 467-472. 

  2. Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580. 

  3. Loque D, Scheller HV, Pauly M. 2015. Engineering of plant cell walls for enhanced biofuel production. Curr. Opin. Plant Biol. 25: 151-161. 

  4. Lee JW, Kim HU, Choi S, Yi J, Lee SY. 2011. Microbial production of building block chemicals and polymers. Curr. Opin. Biotechnol. 22: 758-767. 

  5. Jung YH, Park HM, Kim IJ, Park Y-C, Seo J-H, Kim KH. 2014. Onepot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid-base mixture pretreatment. RSC Adv. 4: 55318-55327. 

  6. Oh EJ, Ha S-J, Rin Kim S, Lee W-H, Galazka JM, Cate JHD, et al. 2013. Enhanced xylitol production through simultaneous coutilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabol. Eng. 15: 226-234. 

  7. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al. 2011. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. NREL/TP-5100-47764, Golden, CO; Available from: http://www.nrel.gov/docs/fy11osti/47764.pdf. 

  8. Jonsson LJ, Alriksson B, Nilvebrant N-O. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16. 

  9. Zhu H, Fang Z, Preston C, Li Y, Hu L. 2014. Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7: 269-287. 

  10. Ding S-Y, Himmel ME. 2006. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54: 597-606. 

  11. Osong SH. 2014. Mechanical pulp based nano-ligno-cellulose production: characterisation and their effect on paper properties. PhD Thesis. Mid Sweden University. 

  12. Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V. 2016. Nanocellulose based polymer composites for applications in food packaging: future prospects and challenges. Polym. Plast. Technol. Eng., accepted. 

  13. Haoran W, Katia R, Scott R, Peter JV. 2014. Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ. Sci.: Nano, 1: 302. 

  14. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, et al. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8: 1934-1941. 

  15. Nickerson R, Habrle J. 1947. Cellulose intercrystalline structure. Ind. Eng. Chem. 39: 1507-1512. 

  16. Ranby BG. 1951. Fibrous macromolecular systems: cellulose and muscle: the colloidal properties of cellulose micelles. Disc. Faraday Soc. 11: 158-164. 

  17. Marchessault RH, Morehead FF, Walter NM. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature 184: 632-633. 

  18. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG, 1992. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biolog. Macromol. 14: 170-172. 

  19. Revol J-F, Godbout L, Gray D. 1998. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J. Pulp Paper Sci. 24: 146-149. 

  20. Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C. 1995. Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Technol. 6: 351-355. 

  21. Osong SH, Norgren S, Engstrand P. 2016. Processing of woodbased microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23: 93-123. 

  22. Ankerfors M. 2012. Microfibrillated cellulose: energy-efficient preparation techniques and key properties. PhD Thesis. KTH Royal Institute of Technology. 

  23. Lindstrom T, Winter L. 1988. Mikrofibrillar cellulosa som komponent vid papperstillverkning. Internal STFI Report C 159: 1988. 

  24. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, et al. 2011. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition 50: 5438-5466. 

  25. Kramer KJ, Masanet E, Xu T, Worrell E. 2009. Energy efficiency improvement and cost saving opportunities for the pulp and paper industry. An energy star guide for energy and plant managers. Berkeley, US: Energy Analysis Department, University of California. 

  26. Siro I, Plackett D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459-494. 

  27. Lavoine N, Desloges I, Dufresne A, Bras J. 2012. Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90: 735-764. 

  28. Turbak AF, Snyder FW, Sandberg KR. 1983. Microfibrillated cellulose. Patents. 

  29. Turbak AF, Synder FW, Sandberg KR. 1983. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In A. Sarko (ed.) Proceedings of the Ninth Cellulose Conference, Applied Polymer Symposia, 37, New York, N.Y., USA: Wiley. pp. 815-827. ISBN 0-471-88132-5. 

  30. Saito T, Isogai A. 2004. TEMPO-mediated oxidation of native cellulose: the effect of oxidation conditions on chemical and crystal structures of the water-Insoluble fractions. Biomacromolecules 5: 1983-1989. 

  31. Lane J. The strange world of super-strong, super-light nanocellulose. Biofuelsdigest 2014; Available from: http://www.biofuelsdigest.com/bdigest/2014/10/29/the-strange-world-of-super-strongsuper-light-nanocellulose/. 

  32. Siqueira G, Bras J, Dufresne A. 2010. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2: 728. 

  33. Aulin C, Gallstedt M, Lindstrom T. 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17: 559-574. 

  34. Charreau H, Foresti ML, Vazquez A. 2013. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol. 7: 56-80. 

  35. Kalia S, Boufi S, Celli A, Kango S. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292: 5-31. 

  36. Brodin FW, Gregersen OW, Syverud K. 2014. Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material-a review. Nordic Pulp Pap. Res. J. 29: 156-166. 

  37. Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppala J. 2012. Flocculation of microfibrillated cellulose in shear flow. Cellulose 19: 1807-1819. 

  38. Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A. 2013. Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20: 727-740. 

  39. Rosenberg M. 2016. Why microfibrillated cellulose is a completely new cellulose product. Available from: http://blog.exilva.com/why-microfibrillated-cellulose-is-a-completely-new-celluloseproduct. 

  40. Kalia S, Dufresne A, Cherian BM, Kaith B, Averous L, Njuguna J, et al. 2011. Cellulose-based bio-and nanocomposites: a review. Int. J. Polym. Sci. 2011: 1-35. 

  41. Chang C-W, Wang M-J. 2013. Preparation of microfibrillated cellulose composites for sustained release of $H_2O_2$ or $O_2$ for biomedical applications. ACS Sustainable Chem. Eng. 1: 1129-1134. 

  42. Islam MT, Alam MM, Zoccola M. 2013. Review on modification of nanocellulose for application in composites. Int. J. Innov. Res. Sci. Eng. Technol. 2: 5444-5451. 

  43. Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J. 2010. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17: 1005-1020. 

  44. Henriksson M, Henriksson G, Berglund L, Lindstrom T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 43: 3434-3441. 

  45. Hassan EA, Hassan ML, Oksman K. 2011. Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci. 43: 76-82. 

  46. Balea A, Merayo N, De La Fuente E, Negro C, Blanco A. 2017. Assessing the influence of refining, bleaching and TEMPOmediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Ind. Crops Prod. 97: 374-387. 

  47. Saito T, Isogai A. 2005. A novel method to improve wet strength of paper. Tappi J. 4: 3-8. 

  48. Ahola S, Turon X, Osterberg M, Laine J, Rojas O. 2008. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24: 11592-11599. 

  49. Eriksson M, Pettersson G, Wagberg L. 2005. Application of polymeric multilayers of starch onto wood fibres to enhance strength properties of paper. Nordic Pulp Pap. Res. J. 20: 270-275. 

  50. Svending P. 2014. Commercial break-through in MFC processing. in 2014 TAPPI international conference on nanotechnology for renewable materials. Vancouver. 

  51. Torvinen K, Kouko J, Passoja S, Keranen J, Hellen E. 2014. Cellulose micro and nanofibrils as a binding material for high filler content papers. Proc., TAPPI Paper Con 2014. 

  52. Perez DDS, Tapin-lingua S, Lavalette A, Barbosa T, Gonzalez I, Siqueira G, et al. 2010. Impact of micro/nanofibrillated cellulose preparation on the reinforcement properties of paper and composites films. in TAPPI International Conference on Nanotechnology for Renewable Materials. 

  53. Manninen M, Kajanto I, Happonen J, Paltakari J. 2011. The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nordic Pulp Pap. Res. J. 26: 297. 

  54. Svending P, da Costa ES. 2016. Microfibrillated cellulose proven to create value in full scale papermaking. O Papel: revista mensal de tecnologia em celulose e papel 77: 79-81. 

  55. Stephen AM. 1995. Food polysaccharides and their applications. Vol. 67, CRC press. 

  56. Turbak AF, Snyder FW, Sandberg KR. 1982. Food products containing microfibrillated cellulose. Patents. 

  57. Wustenberg T. 2014. Cellulose and cellulose derivatives in the food industry: fundamentals and applications. John Wiley & Sons. 

  58. Strom G, Ohgren C, Ankerfors M. Nanocellulose as an additive for foodstuff. Innventia Report 403 2013; Available from: http://217.114.91.26/Documents/Rapporter/Innventia%20report403.pdf. 

  59. Turbak AF, Snyder FW, Sandberg KR. 1983. Suspensions containing microfibrillated cellulose. Patents. 

  60. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. 1983. Microfibrillated cellulose: morphology and accessibility. in J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States). ITT Rayonier Inc., Shelton, WA. 

  61. Boluk Y, Lahiji R, Zhao L, McDermott MT. 2011. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf. A: Physicochem. Eng. Asp. 377: 297-303. 

  62. Turbak AF, Snyder FW, Sandberg KR. 1985. Micro-fibrillated cellulose and process for producing it. Patents. 

  63. Kumar V, Nazari B, Bousfield D, Toivakka M. 2016. Rheology of mcrofibrillated cellulose suspensions in pressure-driven flow. Ind. Eng. Chem. Res. 55: 3603-3613. 

  64. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, et al. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohyd. Polym. 80: 677-686. 

  65. Saarikoski E, Saarinen T, Salmela J, Seppala J. 2012. Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19: 647-659. 

  66. Ono H, Matsui T, Miyamoto I. 2003. Cellulose dispersion. Patents. 

  67. Mueller S, Llewellin EW, Mader HM. 2010. The rheology of suspensions of solid particles. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 466: 1201-1228. 

  68. Brodin FW, Lund K, Brelid H, Theliander H. 2012. Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres. Cellulose 19: 1413-1423. 

  69. Mautner A, Lee K-Y, Tammelin T, Mathew AP, Nedoma AJ, Li K, et al. 2015. Cellulose nanopapers as tight aqueous ultra-filtration membranes. React. Func. Polym. 86: 209-214. 

  70. Carpenter AW, de Lannoy C-F, Wiesner MR. 2015. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49: 5277-5287. 

  71. Chen D, Yang X, He Z, Ni Y. 2016. Potential of cellulose-based materials for lithium-ion batteries (LIB) separator membranes. J. Bioresour. Bioprod. 1: 18-21. 

  72. El Baradai O, Beneventi D, Alloin F, Bongiovanni R, Bruas-Reverdy N, Bultel Y, et al. 2016. Microfibrillated cellulose based ink for eco-sustainable screen printed flexible electrodes in lithium ion batteries. J. Mater. Sci. Technol. 32: 566-572. 

  73. Zolin L, Destro M, Curtil D, Chaussy D, Penazzi N, Beneventi D, et al. 2014. Flexible cellulose-based electrodes: Towards ecofriendly all-paper batteries. Chem. Eng. Trans. 361-366. 

  74. Rebouillat S, Pla F. 2013. State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J. Biomat. Nanobiotechnol. 4: 165. 

  75. Miller J. Nanocellulose: state of the industry. Tappinano report 2015; Available from: http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industrydec-2015.pdf. 

  76. Rouhianen J, Tsitko I, Vippola M, Koivisto J. 2010. Literature study on risks and risk assessment methods related to nanobased products and the recommended methodology for assessing risk of nano-fibrillar cellulose products. Scale-up Nanoparticles in Modern Papermaking-SUNPAP FP7, Theme 4, NMP-Nanosciences, Nanotechnologies, Materials and New Production Technologies. 

  77. Rouhiainen J, Vaananen V, Tsitko I, Kautto J. 2012. Risk assessment of nanofibrillated cellulose in occupational settings. in SUNPAP Final conference. 

  78. Pitkanen M, Sneck A, Hentze H, Sievanen J, Hiltunen J, Hellen E, et al. 2010. Nanofibrillar cellulose: assessment of cytotoxic and genotoxic properties in vitro. in 2010 Tappi International conference on nanotechnology for the forest products industry. 

  79. McLauchlin AR. 2009. Development of a novel organoclay for poly (lactic acid) nanocomposites. PhD Thesis. Andrew Robert McLauchlin. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로