$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

관상동맥 내의 나선형 유동이 협착도에 따라 분획 혈류 예비능에 미치는 영향에 관한 수치해석
THE INFLUENCES OF SWIRL FLOW ON FRACTIONAL FLOW RESERVE IN MILD/MODERATE/SEVERE STENOTIC CORONARY ARTERIAL MODELS 원문보기

한국전산유체공학회지 = Journal of computational fluids engineering, v.22 no.1 = no.76, 2017년, pp.15 - 25  

이경은 (강원대학교 기계의용공학과) ,  김국태 (강원대학교 기계의용공학과) ,  류아진 (강원대학교 기계의용공학과) ,  심은보 (강원대학교 기계의용공학과)

Abstract AI-Helper 아이콘AI-Helper

Swirl flow is often found in proximal coronary arteries, because the aortic valves can induce swirl flows in the coronary artery due to vortex formation. In addition, the curvature and tortuosity of arterial configurations can also produce swirl flows. The present study was performed to investigate ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The present inductive study, with the assumption of the presence or absence of pre-stenotic swirl flow in various grades of stenosis, provides a better understanding of this issue. This study was performed to investigate how pre-stenotic swirl flow affects post-stenotic distal FFR alterations and distal flow behavior under various virtual grades of stenosis progression in a patient. In the present study, we examined pulsatile flow in simplified straight stenotic and helical stenotic coronary arterial models using the 0-D 3-D-coupled Navier-Stokes solver.
  • Here, we present clinically significant FFR associated with pressure and velocity-related mechanical factors. This study was performed to investigate how the presence of pre-stenotic swirl flow influences the post-stenotic local FFR alteration. In particular, we focus on investigating quantitative as well as qualitative characteristics of the effects of swirl flow on the FFR in various mild/ moderate/severe stenotic models using a physiologically more correct zero-dimensional(0-D)- three-dimensional(3-D) coronary circulation simulation.
본문요약 정보가 도움이 되었나요?

참고문헌 (46)

  1. 1996, Frazin, L.J., Vonesh, M.J., Chandran, K.B., Shipkowitz, T., Yaacoub, A.S. and McPherson, D.D., "Confirmation and Initial Documentation of Thoracic and Abdominal Aortic Helical Flow: An Ultrasound Study," Journal of the American Society for Artificial Internal Organs, Vol.42, No.6, pp.951-956. 

  2. 2007, Frydrychowicz, A., Winterer, J.T., Zaitsev, M., Jung, B., Henning, J., Langer, M. and Markl, M., "Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3-D phase contrast MRI at 3T," Journal of Magnetic Resonance Imaging, Vol.25, No.5, pp.1085-1092. 

  3. 2001, Kaazempur-Mofrad, M.R. and Ethier, C.R., "Mass transport in an anatomically realistic human right coronary artery," Annals of Biomedical Engineering, Vol.29, No.2, pp.121-127. 

  4. 1993, Kilner, P.J., Yang, G.Z., Mohiaddin, R.H., Firmin, D.N. and Longmore, D.B., "Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping," Circulation, Vol.88, No.5, pp.2235-2247. 

  5. 2014, Ha, H. and Lee, S.J., "Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model," Medical Engineering & Physics, Vol.36, No.1, pp.119-128. 

  6. 2003, Houston, J.G., Gandy, S.T., Sheppard, D.G., Dick, J.B., Belch, J.J. and Stonebridge, P.A., "Two-dimensional flow quantitative MRI of aortic arch blood flow patterns: Effect of age, sex, and presence of carotid atheromatous disease on prevalence of spiral blood flow," Journal of Magnetic Resonance Imaging, Vol.18, No.2, pp.169-174. 

  7. 2009, Liu, X., Pu, F., Fan, Y., Deng, X., Li, D. and Li, S., "A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch," American Journal of Physiology-Heart and Circulatory Physiology, Vol.297, No.1, pp.H163-H170. 

  8. 2008, Verhey, J.F. and Bara, C., "Influence on fluid dynamics of coronary artery outlet angle variation in artificial aortic root prosthesis," Biomed Engineering Online, Vol.7, No.9, pp.1-9. 

  9. 2011, Morbiducci, U., Ponzini, R., Rizzo, G., Cadioli, M., Esposito, A., Montevecchi, F.M. and Redaelli, A., "Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study," Biomechanics and Modeling in Mechanobiology, Vol.10, No.3, pp.339-355. 

  10. 2011, Lee, K.E., Lee, J.S. and Yoo, J.Y., "A numerical study on steady flow in helically sinuous vascular prostheses," Medical Engineering & Physics, Vol.33, No.1, pp.38-46. 

  11. 2015, Liu, X., Sun, A., Fan, Y. and Deng, X., "Physiological significance of helical flow in the arterial system and its potential clinical applications," Annals of Biomedical Engineering, Vol.43, No.1, pp.3-15. 

  12. 2009, Paul, M.C. and Larman, A., "Investigation of spiral blood flow in a model of arterial stenosis," Medical Engineering & Physics, Vol.31, No.9, pp.1195-1203. 

  13. 1996, Caro, C.G., Doorly, D.J., Tarnawski, M., Scott, K.T., Long, Q. and Dumoulin, C.L., "Non-planar curvature and branching of arteries and non-planar-type flow," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, Vol.452, No.1944, pp.185-197. 

  14. 2013, Caro, C.G., Seneviratne, A., Heraty, K.B., Monaco, C., Burke, M.G., Krams, R., Chang, C.C., Coppola, G. and Gilson, P., "Intimal hyperplasia following implantation of helical-centreline and straight-centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow," Journal of the Royal Society Interface, Vol.10, No.89, p.20130578. 

  15. 2009, Cookson, A.N., Doorly, D.J. and Sherwin, S.J., "Mixing through stirring of steady flow in small amplitude helical tubes," Annals of Biomedical Engineering, Vol.37, No.4, pp.710-721. 

  16. 2009, Sung, K.H., Ro, K.C. and Ryou, H.S., "Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery," Korea-Australia Rheology Journal, Vol.21, No.2, pp.119-126. 

  17. 2013, Keshavarz-Motamed, Z., Garcia, J. and Kadem, L., "Fluid dynamics of coarctation of the aorta and effect of bicuspid aortic valve," PLoS One, Vol.8, No.8, p.e72394. 

  18. 2004, Stonebridge, P.A., Buckley, C., Thompson, A. and Dick, J., "Non spiral and spiral (helical) flow patterns in stenoses: in vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling," International Angiology, Vol.23, No.3, p.276. 

  19. 2014, Kwon, S.S., Chung, E.C., Park, J.S., Kim, G.T., Kim, J.W., Kim, K.H., Shin, E.S. and Shim, E.B., "A novel patient-specific model to compute coronary fractional flow reserve," Progress in Biophysics and Molecular Biology, Vol.116, No.1 pp.48-55. 

  20. 2015, Iori, F., Grechy, L., Corbett, R.W., Gedroyc, W., Duncan, N., Caro, C.G. and Vincent, P.E., "The effect of in-plane arterial curvature on blood flow and oxygen transport in arterio-venous fistulae," Physics of Fluids, Vol.27, No.3, p.031903. 

  21. 2008, Achenbach, S., "Quantification of Coronary Artery Stenoses by Computed Tomography," JACC: Cardiovascular Imaging, Vol.1, pp.472-474. 

  22. 2013, Cury, R.C., Feuchtner, G.M., Batlle, J.C., Pena, C.S., Janowitz, W., Katzen, B.T. and Ziffer, J.A., "Triage of patients presenting with chest pain to the emergency department: implementation of coronary CT angiography in a large urban health care system," American Journal of Roentgenology, Vol.200, No.1, pp.57-65. 

  23. 1973, Young, D.F. and Tsai, F.Y., "Flow characteristics in models of arterial stenosis I. steady flow," Journal of biomechanics, Vol.6, No.4, pp.395-410. 

  24. 2012, Klabunde, R., "Cardiovascular Physiology concepts," The 2nd Edition, Lippincott Williams & Wilkins. 

  25. 2016, Lee, K.E., Kim, G.T., Lee, J.S., Chung, J.H., Shin, E.S. and Shim, E.B., "A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress," International Journal of Cardiology, Vol.222, pp.799-805. 

  26. 1992, Kelly, R. and Fitchett, D., "Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique," Journal of the American College of Cardiology, Vol.20, No.4, pp.952-963. 

  27. 2006, Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I. and Struijker-Boudier, H., "Expert consensus document on arterial stiffness: methodological issues and clinical applications," Eur Heart J, Vol.27, No.21, pp.2588-2605. 

  28. 2005, Verbeke, F., Segers, P., Heireman, S., Vanholder, R., Verdonck, P. and Van Bortel, L.M., "Noninvasive assessment of local pulse pressure: importance of brachial-to-radial pressure amplification," Hypertension, Vol.46, No.1, pp.244-248. 

  29. 2012, Sankaran, S., Moghadam, M.E., Kahn, A.M., Tseng, E.E., Guccione, J.M. and Marsden, A.L., "Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery," Annals of Biomedical Engineering, Vol.40, No.10, pp.2228-2242. 

  30. 1990, Schreiner, W., Neumann, F. and Mohl, W., "The role of intramyocardial pressure during coronary sinus interventions: a computer model study," IEEE Transactions on Biomedical Engineering, Vol.37, No.10, pp.956-967. 

  31. 1998, Du Toit, C.G., "Finite element solution of the Navier-Stokes equations for incompressible flow using a segregated algorithm," Computer Methods in Applied Mechanics and Engineering, Vol.151, No.1-2, pp.131-141. 

  32. 1993, Haroutunian, V. Engelman, M.S. and Hasbani, I., "Segregated finite element algorithms for the numerical solution of large-scale incompressible flow problems," International Journal for Numerical Methods in Fluids, Vol.17, No.4, pp.323-348. 

  33. 1994, Shim, E.B. and Chang, K.S., "Three-dimensional vortex flow past a tilting disc valve using a segregated finite element scheme," Computational Fluid Dynamics Journal, Vol.3, pp.205-222. 

  34. 1997, Shim, E.B. and Chang, K.S., "Numerical analysis of three-dimensional Bjork Shiley valvular flow in an aorta," Journal of Biomechanical Engineering, Vol.119, No.1, pp.45-51. 

  35. 1998, White, F.M., "Fluid mechanics. 4Th Ed," McGraw-Hill Higher Education. 

  36. 1974, Gould, K.L., Lipscomb, K. and Hamilton, G.W., "Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve," The American Journal of Cardiology, Vol.33, No.1, pp.87-94. 

  37. 2010, Bark, D.L. and Ku, D.N., "Wall shear over high degree stenoses pertinent to atherothrombosis," Journal of Biomechanics, Vol.43, No.15, pp.2970-2977. 

  38. 1998, Baumgart, D., Haude, M., Goerge, G., Ge, J., Vetter, S., Dagres, N., Heusch, G. and Erbel, R., "Improved assessment of coronary stenosis severity using the relative flow velocity reserve," Circulation, Vol.98, No.1, pp.40-60. 

  39. 2014, Gaur, S., Bezerra, H.G., Lassen, J.F., Christiansen, E.H., Tanaka, K., Jensen, J.M., Oldroyd, K.G., Leipsic, J., Achenbach, S. and Kaltoft, A.K., "Fractional flow reserve derived from coronary CT angiography: Variation of repeated analyses," Cardiovascular Computed Tomography, Vol.8, No.4, pp.307-314. 

  40. 2011, Koo, B.K., Erglis, A., Doh, J.H., Daniels, D.V., Jegere, S., Kim, H.S., Dunning, A., DeFrance, T., Lansky, A. and Leipsic, J., "Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW(Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study," The American College of Cardiology, Vol.58, No.19, pp.1989-1997. 

  41. 2013, Nakazato, R., Park, H.B., Berman, D.S., Gransar, H., Koo, B.K., Erglis, A., Lin, F.Y., Dunning, A.M., Budoff, M.J. and Malpeso J., "Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of Intermediate Stenosis Severity Results from the DeFACTO Study," Circulation: Cardiovascular Imaging, Vol.6, No.6, pp.881-889. 

  42. 2014, Norgaard, B.L., Leipsic, J., Gaur, S., Seneviratne, S., Ko, B.S., Ito, H., Jensen, J.M., Mauri, L., De Bruyne, B. and Bezerra, H., "Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps)," The American College of Cardiology, Vol.63, No.12, pp.1145-1155. 

  43. 2014, Renker, M., Schoepf, U.S., Wang, R., Meinel, F.G., Rier, J.D., Bayer, R.R., Mollmann, H., Hamm, C.W., Steinberg, D.H. and Baumann, S., "Comparison of Diagnostic Value of a Novel Noninvasive Coronary Computed Tomography Angiography Method Versus Standard Coronary Angiography for Assessing Fractional Flow Reserve," The American Journal of Cardiology, Vol.114, No.9, pp.1303-1308. 

  44. 2002, Shalman, E., Rosenfeld, M., Dgany, E. and Einav, S., "Numerical modeling of the flow in stenosed coronary artery. The relationship between main hemodynamic parameter," Computers in Biology and Medicine, Vol.32, No.5, pp.329-344. 

  45. 2013, Taylor, C.A., Fonte, T.A. and Min, J.K., "Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis," Journal of the American College of Cardiology, Vol.61, No.22, pp.2233-2241. 

  46. 1995, Tron, C., Donohue, T.J., Bach, R.G., Aguirre, F.V., Caracciolo, E.A., Wolford, T.L., Miller, D.D. and Kern, M.J., "Comparison of pressure-derived fractional flow reserve with poststenotic coronary flow velocity reserve for prediction of stress myocardial perfusion imaging," Journal of American Heart, Vol.130, No.4. pp.723-733. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로