$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CTD 탈 인산화 효소의 기능과 역할
Emerging Roles of CTD Phosphatases 원문보기

생명과학회지 = Journal of life science, v.27 no.3 = no.203, 2017년, pp.370 - 381  

김영준 (건국대학교 의생명화학과)

초록
AI-Helper 아이콘AI-Helper

단백질 탈 인산화는 단백질 탈 인산화 효소에 의해 매개되는 과정으로 세포 생존에 매우 중요하다. 단백질 탈 인산화 효소 중에서 최근 CTD (carboxy-terminal domain) 탈 인산화 효소들이 등장하고 있으며 이들에 대한 새로운 생물학적 역할이 밝혀지고 있다. 이 효소의 그룹에는CTD 탈 인산화 효소 1(CTDP1), CTD 소형 탈 인산화 효소 1(CTDSP1), CTD 소형 탈 인산화 효소 2(CTDSP2), CTD 소형 탈 인산화 효소 유사(CTDSPL), CTD 소형 탈 인산화 효소 유사 2(CTDSPL2), CTD 핵 탈 인산화 효소(CTDNEP1) 및 유비퀴틴 유사 도메인 함유CTD 탈 인산화 효소 1(UBLCP1)들이 존재한다. CTDP1은 RNA 중합 효소 II (RNAPII)의 CTD의 두 번째 인산화 된 세린을 탈 인산화 시키고, CTDSP1, STDSP2 및 CTDSPL은 RNAPII의 CTD의 다섯 번째 인산화 된 세린을 탈 인산화 시킨다. 그리고 CTDSP1은 SMAD들, CDCA3, Twist1, 종양억제 단백질인 PML, c-Myc과 같은 새로운 기질을 탈 인산화 시키는 것으로 밝혀지고 있다. CTDP1은 유사 분열 조절 및 암세포 성장과 관련이 있다. CTDSP1, CTDSP2 및 CTDSPL은 종양 억제 기능 및 줄기 세포 분화와 관련이 있다. CTDNEP1은 LIPIN1을 탈 인산화 시키고 핵막 형성과 관련이 있다. CTDSPL2는 조혈 줄기 세포 분화와 관련이 있다. UBLCP1은 26S 프로테아좀을 탈 인산화 시키고 핵 프로테아좀 활성 조절과 관련이 있다. 결론적으로, CTD 탈 인산화 효소의 새로운 기능과 역할은 최근의 연구에서 밝혀지고 있으며, 이 리뷰는 CTD 탈 인산화 효소의 새롭게 밝혀진 역할들을 요약하고자 정리한 것이다.

Abstract AI-Helper 아이콘AI-Helper

Protein dephosphorylation is important for cellular regulation, which is catalyzed by protein phosphatases. Among protein phosphatases, carboxy-terminal domain (CTD) phosphatases are recently emerging and new functional roles of them have been revealed. There are 7 CTD phosphatases in human genome, ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 현재까지 CTDNEP 1의 생물학적 기능을 밝히는데 상당한 발전을 이루었다고 볼 수 있으나, 해결해야 할 많은 의문점이 남아 있다. 그러한 의문점 중에 하나로써,포유류 세포에서 지질 합성에 관여하는 유전자의 발현을 조절하는 측면에서 탈 인산화 된 LIPIN의 역할을 규명하는 것이다.
  • 1). 본 리뷰에서는 위에서 언급된 7종의 CTD 탈 인산화 효소들에 대해 최근에 연구되어 보고된 생물학적 역할을 중심으로 정리하여, 앞으로의 CTD 탈 인산화 효소들의 연구 전망에 대해 논의해보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
인산화의 과정은 어떻게 진행되는가? 생명체에 있어 그 생명 현상의 유지를 위해 여러 가지의 신호 전달 과정이 발달되어 있는데, 이 중 인산화(phosphorylation)의 과정은 매우 중요한 의미를 가지고 있다는 점이 잘 알려져 있다[24]. 이러한 인산화의 과정은 생체 내에 존재하는 다양한 인산화 단백질(kinase)들에 의해 진행된다. 한편 이러한 인산화의 역 반응으로써 탈 인산화(dephosphorylation) 과정이 존재하여 생체의 항상성을 유지하게 된다.
C-말단 도메인의 ‘Y1S2P3T4S5P6S7’ 서열이 반복적으로 존재하고 있는 영역의 역할은 무엇인가? 인간 RNA 중합 효소 II에서는‘Y1S2P3T4S5P6S7’ 서열이 52번 반복되고 효모의 경우에는 26번 반복된다[78]. 이 영역은 세포 생존에 매우 중요한 부분이며 RNA 중합 효소 II를 여러가지 방법으로 제어하는 역할을 수행하는 것으로 알려져 있다[33]. 이 C-말단 도메인의 서열에서 알 수 있듯이 인산화가 가능한 tyrosine (Y)과 serine (S), threonine (T) 잔기가 여러 개 존재하고 있으며, 인산화 된 이 잔기들을 탈 인산화 하는 탈 인산화 효소들이 존재하게 된다.
단백질 탈 인산화 효소는 어떻게 분류되는가? 단백질 탈 인산화 효소(protein phosphatase)는 세포 내에서 매우 중요하고도 다양한 역할을 수행한다. 단백질 탈 인산화 효소는 탈 인산화 하는 잔기에 따라 serine/threonine 탈인산화 효소들과 tyrosine 탈 인산화 효소들로 분류된다. 이러한 단백질 탈 인산화 효소들은 현재 인간의 genome에서 약 150여종이 발견된다[35].
질의응답 정보가 도움이 되었나요?

참고문헌 (82)

  1. Anedchenko, E. A., Dmitriev, A. A., Krasnov, G. S., Kondrat'eva, T. T., Kopantsev, E. P. and Vinogradova, T. V., et al. 2008. Down-regulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1 and HYAL2 genes in non-small cell lung cancer. Mol. Biol. (Mosk.) 42, 965-976. 

  2. Anedchenko, E. A., Kiseleva, N. P., Dmitriev, A. A., Kiselev, F. L., Zabarovskii, E. R. and Senchenko, V. N. 2007. Tumor suppressor gene RBSP3 in cervical carcinoma: copy number and transcriptional level. Mol. Biol. (Mosk.) 41, 86-95. 

  3. Bahmanyar, S. 2015. Spatial regulation of phospholipid synthesis within the nuclear envelope domain of the endoplasmic reticulum. Nucleus 6, 102-106. 

  4. Bahmanyar, S., Biggs, R., Schuh, A. L., Desai, A., Muller-Reichert, T. and Audhya, A., et al. 2014. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121-126. 

  5. Barbosa, A. D., Sembongi, H., Su, W. M., Abreu, S., Reggiori, F., Carman, G. M. and Siniossoglou, S. 2015. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 26, 3641-3657. 

  6. Buratowski, S. 2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541-546. 

  7. Campbell, J. L., Lorenz, A., Witkin, K. L., Hays, T., Loidl, J. and Cohen-Fix, O. 2006. Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol. Biol. Cell 17, 1768-1778. 

  8. Dai, M., Al-Odaini, A. A., Arakelian, A., Rabbani, S. A., Ali, S. and Lebrun, J. J. 2012. A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFbeta-mediated breast cancer cell migration and invasion. Breast Cancer Res. 14, R127. 

  9. Denu, J. M., Stuckey, J. A., Saper, M. A. and Dixon, J. E. 1996. Form and function in protein dephosphorylation. Cell 87, 361-364. 

  10. Dixon, D. P., Fordham-Skelton, A. P. and Edwards, R. 2005. Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochemistry 44, 7696-7703. 

  11. Egloff, S. and Murphy, S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280-288. 

  12. Fawcett, K. A., Grimsey, N., Loos, R. J., Wheeler, E., Daly, A. and Soos, M., et al. 2008. Evaluating the role of LPIN1 variation in insulin resistance, body weight, and human lipodystrophy in U.K. Populations. Diabetes 57, 2527-2533. 

  13. Fu, H., Yang, D., Wang, C., Xu, J., Wang, W., Yan, R. and Cai, Q. 2015. Carboxy-terminal domain phosphatase 1 silencing results in the inhibition of tumor formation ability in gastric cancer cells. Oncol. Lett. 10, 2947-2952. 

  14. Guo, X., Engel, J. L., Xiao, J., Tagliabracci, V. S., Wang, X., Huang, L. and Dixon, J. E. 2011. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl. Acad. Sci. USA 108, 18649-18654. 

  15. Han, S., Bahmanyar, S., Zhang, P., Grishin, N., Oegema, K. and Crooke, R., et al. 2011. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J. Biol. Chem. 287, 3123-3137. 

  16. Han, S., Binns, D. D., Chang, Y. F. and Goodman, J. M. 2015. Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p(DeltaNterm) only in combination with Ldb16p. BMC Cell Biol. 16, 29. 

  17. Hausmann, S. and Shuman, S. 2002. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J. Biol. Chem. 277, 21213-21220. 

  18. Hayata, T., Ezura, Y., Asashima, M., Nishinakamura, R. and Noda, M. 2015. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-beta signaling. J. Bone Miner. Res. 30, 947. 

  19. Irie, K., Takase, M., Araki, H. and Oshima, Y. 1993. A gene, SMP2, involved in plasmid maintenance and respiration in Saccharomyces cerevisiae encodes a highly charged protein. Mol. Gen. Genet. 236, 283-288. 

  20. Kashuba, V. I., Li, J., Wang, F., Senchenko, V. N., Protopopov, A. and Malyukova, A., et al. 2004. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc. Natl. Acad. Sci. USA 101, 4906-4911. 

  21. Kashuba, V. I., Pavlova, T. V., Grigorieva, E. V., Kutsenko, A., Yenamandra, S. P. and Li, J., et al. 2009. High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS One 4, e5231. 

  22. Khan, M. A., Tania, M., Wei, C., Mei, Z., Fu, S. and Cheng, J., et al. 2015. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 6, 19580-19591. 

  23. Kim, H., Erickson, B., Luo, W., Seward, D., Graber, J. H. and Pollock, D. D., et al. 2010. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279-1286. 

  24. Kim, Y., Gentry, M. S., Harris, T. E., Wiley, S. E., Lawrence, J. C. Jr. and Dixon, J. E. 2007. A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc. Natl. Acad. Sci. USA 104, 6596-6601. 

  25. Kim, Y. J. and Bahk, Y. Y. 2014. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners. Biochem. Biophys. Res. Commun. 448, 189-194. 

  26. Kloet, D. E., Polderman, P. E., Eijkelenboom, A., Smits, L. M., van Triest, M. H. and van den Berg, M. C., et al. 2015. FOXO target gene CTDSP2 regulates cell cycle progression through Ras and p21(Cip1/Waf1). Biochem. J. 469, 289-298. 

  27. Lin, Y. C., Lu, L. T., Chen, H. Y., Duan, X., Lin, X. and Feng, X. H., et al. 2014. SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling. Cancer Res. 74, 6935-6946. 

  28. Lindegaard, B., Larsen, L. F., Hansen, A. B., Gerstoft, J., Pedersen, B. K. and Reue, K. 2007. Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy. Int. J. Obes. (Lond.) 31, 449-456. 

  29. Ma, Y. N., Zhang, X., Yu, H. C. and Zhang, J. W. 2010. CTD small phosphatase like 2 (CTDSPL2) can increase epsilon- and gamma-globin gene expression in K562 cells and CD34+ cells derived from umbilical cord blood. BMC Cell Biol. 11, 75. 

  30. Masuda, M., Oshima, A., Noguchi, T. and Kagiwada, S. 2015. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation. J. Biochem. 159, 351-361. 

  31. Mayfield, J. E., Burkholder, N. T. and Zhang, Y. J. 2016. Dephosphorylating eukaryotic RNA polymerase II. Biochim. Biophys. Acta 1864, 372-387. 

  32. Mayfield, J. E., Fan, S., Wei, S., Zhang, M., Li, B. and Ellington, A. D., et al. 2015. Chemical tools to decipher regulation of phosphatases by proline isomerization on eukaryotic RNA polymerase II. ACS Chem. Biol. 10, 2405-2414. 

  33. Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. and Cramer, P. 2005. A structural perspective of CTD function. Genes Dev. 19, 1401-1415. 

  34. Mul, J. D., Nadra, K., Jagalur, N. B., Nijman, I. J., Toonen, P. W. and Medard, J. J., et al. 2011. A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J. Biol. Chem. 286, 26781-26793. 

  35. Mustelin, T. 2007. A brief introduction to the protein phosphatase families. Methods Mol. Biol. 365, 9-22. 

  36. Nesti, E., Corson, G. M., McCleskey, M., Oyer, J. A. and Mandel, G. 2014. C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc. Natl. Acad. Sci. USA 111, E3929-3936. 

  37. Notredame, C., Higgins, D. G. and Heringa, J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217. 

  38. O'Hara, L., Han, G. S., Peak-Chew, S., Grimsey, N., Carman, G. M. and Siniossoglou, S. 2006. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J. Biol. Chem. 281, 34537-34548. 

  39. Payne, V. A., Grimsey, N., Tuthill, A., Virtue, S., Gray, S. L. and Dalla Nora, E., et al. 2008. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57, 2055-2060. 

  40. Peterfy, M., Phan, J., Xu, P. and Reue, K. 2001. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 27, 121-124. 

  41. Phan, J. and Reue, K. 2005. Lipin, a lipodystrophy and obesity gene. Cell Metab. 1, 73-83. 

  42. R, H. R., Kim, H., Noh, K. and Kim, Y. J. 2014. The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1. BMB Rep. 47, 192-196. 

  43. Rosonina, E. and Blencowe, B. J. 2004. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage. RNA 10, 581-589. 

  44. Sakaguchi, M., Sharmin, S., Taguchi, A., Ohmori, T., Fujimura, S. and Abe, T., et al. 2013. The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nat. Commun. 4, 1398. 

  45. Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S. and Siniossoglou, S. 2005. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931-1941. 

  46. Sapkota, G., Knockaert, M., Alarcon, C., Montalvo, E., Brivanlou, A. H. and Massague, J. 2006. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J. Biol. Chem. 281, 40412-40419. 

  47. Satow, R., Chan, T. C. and Asashima, M. 2002. Molecular cloning and characterization of dullard: a novel gene required for neural development. Biochem. Biophys. Res. Commun. 295, 85-91. 

  48. Senchenko, V. N., Anedchenko, E. A., Kondratieva, T. T., Krasnov, G. S., Dmitriev, A. A. and Zabarovska, V. I., et al. 2010. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 10, 75. 

  49. Shi, Y. 2009. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468-484. 

  50. Sim, M. F., Dennis, R. J., Aubry, E. M., Ramanathan, N., Sembongi, H. and Saudek, V., et al. 2012. The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1. Mol. Metab. 2, 38-46. 

  51. Sim, M. F., Talukder, M. M., Dennis, R. J., O'Rahilly, S., Edwardson, J. M. and Rochford, J. J. 2013. Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms. Diabetologia 56, 2498-2506. 

  52. Sim, M. F., Talukder, M. U., Dennis, R. J., Edwardson, J. M. and Rochford, J. J. 2014. Analyzing the functions and structure of the human lipodystrophy protein seipin. Methods Enzymol. 537, 161-175. 

  53. Sinha, S., Singh, R. K., Alam, N., Roy, A., Roychoudhury, S. and Panda, C. K. 2008. Frequent alterations of hMLH1 and RBSP3/HYA22 at chromosomal 3p22.3 region in early and late-onset breast carcinoma: clinical and prognostic significance. Cancer Sci. 99, 1984-1991. 

  54. Son, S. and Osmani, S. A. 2009. Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1. Eukaryot. Cell 8, 573-585. 

  55. Su, Y. A., Lee, M. M., Hutter, C. M. and Meltzer, P. S. 1997. Characterization of a highly conserved gene (OS4) amplified with CDK4 in human sarcomas. Oncogene 15, 1289-1294. 

  56. Suh, M. H., Ye, P., Zhang, M., Hausmann, S., Shuman, S., Gnatt, A. L. and Fu, J. 2005. Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD. Proc. Natl. Acad. Sci. USA 102, 17314-17319. 

  57. Sun, G., Hu, Z., Min, Z., Yan, X., Guan, Z. and Su, H., et al. 2015. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor beta (TGFbeta)-mediated Germ Layer Induction in Xenopus Embryos. J. Biol. Chem. 290, 17239-17249. 

  58. Szymanski, K. M., Binns, D., Bartz, R., Grishin, N. V., Li, W. P. and Agarwal, A. K., et al. 2007. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl. Acad. Sci. USA 104, 20890-20895. 

  59. Tanaka, S. S., Nakane, A., Yamaguchi, Y. L., Terabayashi, T., Abe, T. and Nakao, K., et al. 2013. Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLoS One 8, e57428. 

  60. Thompson, J., Lepikhova, T., Teixido-Travesa, N., Whitehead, M. A., Palvimo, J. J. and Janne, O. A. 2006. Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J. 25, 2757-2767. 

  61. Urrutia, H., Aleman, A. and Eivers, E. 2016. Drosophila Dullard functions as a Mad phosphatase to terminate BMP signaling. Sci. Rep. 6, 32269. 

  62. Varon, R., Gooding, R., Steglich, C., Marns, L., Tang, H. and Angelicheva, D., et al. 2003. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat. Genet. 35, 185-189. 

  63. Visconti, R., Della Monica, R., Palazzo, L., D'Alessio, F., Raia, M. and Improta, S., et al. The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs. Cell Death Differ. 22, 1551-1560. 

  64. Visconti, R., Palazzo, L., Della Monica, R. and Grieco, D. 2012. Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat. Commun. 3, 894. 

  65. Wang, W., Liao, P., Shen ,M., Chen, T., Chen, Y. and Li, Y., et al. 2015. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 35, 491-500. 

  66. Wani, S., Sugita, A., Ohkuma, Y. and Hirose, Y. 2016. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation. J. Biochem. 160, 111-120. 

  67. Wee, K., Yang, W., Sugii, S. and Han, W. 2014. Towards a mechanistic understanding of lipodystrophy and seipin functions. Biosci. Rep. 34, e00141 

  68. Witkin, K. L., Friederichs, J. M., Cohen-Fix, O. and Jaspersen, S. L. 2010 Changes in the nuclear envelope environment affect spindle pole body duplication in Saccharomyces cerevisiae. Genetics 186, 867-883. 

  69. Wolinski, H., Hofbauer, H. F., Hellauer, K., Cristobal-Sarramian, A., Kolb, D. and Radulovic, M., et al. 2015. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim. Biophys. Acta 1851, 1450-1464. 

  70. Wrighton, K. H., Willis, D., Long, J., Liu, F., Lin, X. and Feng, X. H. 2006. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J. Biol. Chem. 281, 38365-38375. 

  71. Yeo, M., Lee, S. K., Lee, B., Ruiz, E. C., Pfaff, S. L. and Gill, G. N. 2005. Small CTD phosphatases function in silencing neuronal gene expression. Science 307, 596-600. 

  72. Yeo, M. and Lin, P. S. 2007. Functional characterization of small CTD phosphatases. Methods Mol. Biol. 365, 335-346. 

  73. Yeo, M., Lin, P. S., Dahmus, M. E. and Gill, G. N. 2003. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078-26085. 

  74. Yun, J. H., Ko, S., Lee, C. K., Cheong, H. K., Cheong, C., Yoon, J. B. and Lee, W. 2013. Solution structure and Rpn1 interaction of the UBL domain of human RNA polymerase II C-terminal domain phosphatase. PLoS One 8, e62981. 

  75. Zhang, D. W., Mosley, A. L., Ramisetty, S. R., Rodriguez-Molina, J. B., Washburn, M. P. and Ansari, A. Z. 2012. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J. Biol. Chem. 287, 8541-8551. 

  76. Zhang, M., Cho, E. J., Burstein, G., Siegel, D. and Zhang, Y. 2011. Selective inactivation of a human neuronal silencing phosphatase by a small molecule inhibitor. ACS Chem. Biol. 6, 511-519. 

  77. Zhang, M., Liu J., Kim, Y., Dixon, J. E., Pfaff, S. L. and Gill, G. N., et al. 2010. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Protein Sci. 19, 974-986. 

  78. Zhang, Y., Kim, Y., Genoud, N., Gao, J., Kelly, J. W. and Pfaff, S. L., et al. 2006. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell 24, 759-770. 

  79. Zhao, Y., Xiao, M., Sun, B., Zhang, Z., Shen, T. and Duan, X., et al. 2014. C-terminal domain (CTD) small phosphatase-like 2 modulates the canonical bone morphogenetic protein (BMP) signaling and mesenchymal differentiation via Smad dephosphorylation. J. Biol. Chem. 289, 26441-26450. 

  80. Zheng, H., Ji, C., Gu, S., Shi, B., Wang, J., Xie, Y. and Mao, Y. 2005. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Biochem. Biophys. Res. Commun. 331, 1401-1407. 

  81. Zhong, R., Ge, X., Chu, T., Teng, J., Yan, B. and Pei, J., et al. 2015. Lentivirus-mediated knockdown of CTDP1 inhibits lung cancer cell growth in vitro. J. Cancer Res. Clin. Oncol. 142, 723-732. 

  82. Zohn, I. E. and Brivanlou, A. H. 2001. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Dev. Biol. 239, 118-131. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로