$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

방사성 폐기물의 생물정화를 위한 극한세균 데이노코쿠스 라디오두란스의 연구적 고찰
Research Perspective of an Extremophilic Bacterium, Deinococcus radiodurans on Bioremediation of Radioactive Wastes 원문보기

공업화학 = Applied chemistry for engineering, v.28 no.2, 2017년, pp.133 - 140  

정선욱 (서울시립대학교 환경공학부) ,  최용준 (서울시립대학교 환경공학부)

초록
AI-Helper 아이콘AI-Helper

방사성 폐기물에 대한 우려가 증대됨에 따라 생물정화 기술에 대한 관심이 고조되고 있다. 병원과 원자력발전 등에서 발생되는 많은 양의 방사성 폐기물이 환경에 직접 노출됨에 따라, 이를 정화하기 위한 다양한 물리화학적 기술이 보고되고 있다. 하지만, 이러한 방법은 고비용 및 고위험성 과정이 수반되기 때문에 미생물을 이용한 친환경적 생물정화 기술이 요구되고 있다. 최근, 고방사선 노출 등과 같은 극한환경에서 서식할 수 있는 방사선저항성 미생물에 대한 연구가 많이 보고되고 있으며, 이를 이용한 방사성 폐기물 정화에 대한 연구적 관심이 높아지고 있다. 데이노코쿠스 라디오두란스는 대표적인 방사선저항성 미생물로써 높은 방사선에 저항성을 갖는 특성으로 인해 방사성 폐기물 등의 유해물질 정화에 이용될 수 있다. 본 총설에서는 데이노코쿠스 라디오두란스의 방사선내성과 관련한 일반적 기작에 대해 소개하고, 방사성 폐기물의 생물정화 활용 가능성에 대해 논의한다.

Abstract AI-Helper 아이콘AI-Helper

Increasing concerns on radioactive wastes have drawn much attention on the development of remediation technologies. Massive amounts of radioactive wastes generated from hospital and nuclear power plants were exposed to our environment. Although physicochemical removal methods were developed, an eco-...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • radiodurans make it an ideal candidate for bioremediation of radio-active heavy metals and radionuclides. In this article, we reviewed remarkable characteristics of D. radiodurans and demonstrated the potential use of D. radiodurans for remediation of radioactive polluted environments throughout the previous observations.
본문요약 정보가 도움이 되었나요?

참고문헌 (98)

  1. N. Yoshida and J. Kanda, Tracking the Fukushima radionuclides, Science, 336, 1115-1116 (2012). 

  2. K. O. Buesseler, S. R. Jayne, N. S. Fisher, I. I. Rypina, H. Baumann, Z. Baumann, C. F. Breier, E. M. Douglass, J. George, A. M. Macdonald, H. Miyamoto, J. Nishikawa, S. M. Pike, and S. Yoshida, Fukushima-derived radionuclides in the ocean and biota off Japan, Proc. Natl. Acad. Sci., U. S. A., 109, 5984-5988 (2012). 

  3. F. F. Evans, S. Rosado, G. V. Sebastian, R. Casella, PLOA Machado, C. Holmstrom, S. Kjelleberg, J. D. Van Elsas, and L. Seldin, Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms, FEMS Microbiol. Ecol., 49, 295-305 (2004). 

  4. S. K. Brar, M. Verma, R. Y. Surampalli, K. Misra, R. D. Tyagi, N. Meunier, and J. F. Blais, Bioremediation of hazardous wastes: A review, Pract. Period. Hazard. Toxic Radioact. Waste Manag., 10, 59-72 (2006). 

  5. D. Prakash, P. Gabani, A. K. Chandel, Z. Ronen, and O. V. Singh, Bioremediation: a genuine technology to remediate radionuclides from the environment, Microb. Biotechnol., 6, 349-360 (2013). 

  6. G. M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization, Curr. Opin. Biotechnol., 11, 271-279 (2000). 

  7. J. R. Lloyd, J. Ridley, T. Khizniak, N. N. Lyalikova, and L. E. Macaskie, Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flow-through bioreactor, Appl. Environ. Microbiol., 65, 2691-2696 (1999). 

  8. R. AP. Thomas, A. J. Beswick, G. Basnakova, R. Moller, and L. E. Macaskie, Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes, J. Chem. Technol. Biotechnol., 75, 187-195 (2000). 

  9. G. Raghu, V. Balaji, G. Venkateswaran, A. Rodrigue, and P. M. Mohan, Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes, Appl. Microbiol. Biotechnol., 81, 571-578 (2008). 

  10. M. Daly, Engineering radiation-resistant bacteria for environmental biotechnology, Curr. Opin. Biotechnol., 11, 280-285 (2000). 

  11. H. Brim, A. Venkateswaran, H. M. Kostandarithes, J. K. Fredrickson, and M. J. Daly, Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments, Appl. Environ. Microbiol., 69, 4575-4582 (2003). 

  12. E. Gerber, R. Bernard, S. Castang, N. Chabot, F. Coze, A. Dreux-Zigha, E. Hauser, P. Hivin, P. Joseph, C. Lazarelli, G. Letellier, J. Olive, and J.-P. Leonetti, Deinococcus as new chassis for industrial biotechnology: biology, physiology and tools, J. Appl. Microbiol., 119, 1-10 (2015). 

  13. D. M. Sweet and B. E. Moseley, The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA, Mutat. Res., 34, 175-186 (1976). 

  14. J. R. Battista, Against all odds: the survival strategies of Deinococcus radiodurans, Annu. Rev. Microbiol., 51, 203-224 (1997). 

  15. M. M. Cox and J. R. Battista, Deinococcus radiodurans-the consummate survivor, Nat. Rev. Microbiol., 3, 882-892 (2005). 

  16. D. Slade and M. Radman, Oxidative stress resistance in Deinococcus radiodurans, Microbiol. Mol. Biol. Rev., 75, 133-191 (2011). 

  17. C. C. Lange, L. P. Wackett, K. W. Minton, and M. J. Daly, Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments, Nat. Biotechnol., 16, 929-933 (1998). 

  18. B. W. Brooks and R. G. E. Murray, Nomenclature for Micrococcus radiodurans and other radiation resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species, Int. J. Syst. Bacteriol., 31, 353-360 (1981). 

  19. S. H. Yoo, H. Y. Weon, S. J. Kim, Y. S. Kim, B. Y. Kim, and S. W. Kwon, Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples, Int. J. Syst. Evol. Microbiol., 60, 1191-1195 (2010). 

  20. W. T. Im, H. M. Jung, L. N. Ten, M. K. Kim, N. Bora M. Goodfellow, S. Y. Lim, J. W. Jung, and S. T. Lee, Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge, Int. J. Syst. Evol. Microbiol., 58, 2348-2353 (2008). 

  21. A. D. Groot, V. Chapon, P. Servant, R. Christen, M. F. Saux, S. Sommer, and T. Heulin, Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert, Int. J. Syst. Evol. Microbiol., 55, 2441-2446 (2005). 

  22. F. A. Rainey, K. Ray, M. Ferreira, B. Z. Gatz, M. F. Nobre, D. Bagaley, B. A. Rash, M. J. Park, A. M. Earl, N. C. Shank, A. M. Small, M. C. Henk, J. R. Battista, P. Kampfer, and M. S. da Costa, Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample, Appl. Environ. Microbiol., 71, 5225-5235 (2005). 

  23. K. Suresh, G. S. Reddy, S. Sengupta, and S. Shivaji, Deinococcus indicus sp. nov., an arsenic resistant bacterium from aquifer in West Bengal, India, Int. J. Syst. Evol. Microbiol., 54, 457-461 (2004). 

  24. A. C. Ferreira, M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa, Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs, Int. J. Syst. Bacteriol., 47, 939-947 (1997). 

  25. P. Hirsch, C. A. Gallikowski, J. Siebert, K. Peissl, R. Kroppenstedt, P. Schumann, E. Stackebrandt, and R. Anderson, Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV resistant bacteria from continental Antarctica, Syst. Appl. Microbiol., 27, 636-645 (2004). 

  26. M. Kolari, U. Schmidt, E. Kuismanen, and M. S. Salkinoja-Salonen, Firm but slippery attachment of Deinococcus geothermalis, J. Bacteriol., 184, 2473-2480 (2002). 

  27. O. White, J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn et al., Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1, Science, 286, 1571-1577 (1999). 

  28. X. Hua and Y. Hua, Improved complete genome sequence of the extremely radioresistant bacterium Deinococcus radiodurans R1 obtained using PacBio single-molecule sequencing, Genome Announc., 4, e00886-16 (2016). 

  29. K. S. Makarova, M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Lapidus, A. Copeland, E. Kim, M. Land, K. Mavromatis, S. Pitluck, P. M. Richardson, and M. J. Daly, Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks, PLoS One, 2, e955 (2007). 

  30. A. de Groot, R. Dulermo, P. Ortet, L. Blanchard, P. Guerin, B. Fernandez, B. Vacherie, and C. Dossat, E. Jolivet, P. Siguire, M. Chandler, M. Barakat, A. Dedieu, and J. Armengaud, Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti, PLoS Genet., 5, e1000434 (2009). 

  31. R. Pukall, A. Zeytun, S. Lucas, A. Lapidus, N. Hammon, S. Deshpande, M. Nolan, J. F. Cheng, S. Pitluck, K. Liolios, L. Pagani, N. Mikhailova, N. Ivanova, K. Mavromatis, A. Pati, R. Tapia, C. Han, L. Goodwin, A. Chen, K. Palaniappan, M. Land, L. Hauser, Y. J. Chang, C. D. Jeffries, E. M. Brambilla, M. Rohde, M. Goker, J. C. Detter, T. Woyke, J. Bristow, J. A. Eisen, V. Markowitz, P. Hugenholtz, N. C. Kyrpides, and H. P. Klenk, Complete genome sequence of Deinococcus maricopensis type strain (LB-34T), Stand. Genomic Sci., 4, 163-172 (2011). 

  32. M. Yuan, M. Chen, W. Zhang, W. Lu, J. Wang, M. Yang, P. Zhao, R. Tang, X. Li, Y. Hao, Z. Zhou, Y. Zhan, H. Yu, and M. Lin, Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: Insights into the extreme environmental adaptations, PLoS One, 7, e34458 (2012). 

  33. A. Copeland, A. Zeytun, M. Yassawong, M. Nolan, S. Lucas, N. Hammon, S. Deshpande, J. F. Cheng, C. Han, R. Tapia, L. A. Goodwin, S. Pitluck, K. Mavromatis, K. Liolios, I. Pagani, N. Ivanova, A. Pati, A. Chen, K. Palaniappan, M. Land, L. Hauser, C. D. Jeffries, E. M. Brambilla, M. Rohde, J. Sikorski, R. Pukall, M. Goker, J. C. Detter, T. Woyke, J. Bristow, J. A. Eisen, V. Markowitz, N. C. Kyrpides, H. P. Klenk, and A. Lapidus, Complete genome sequence of the orange-red pigmented, radioresistant Deinococcus proteolyticus type strain (MRPT), Stand. Genomic Sci., 6, 240-250 (2012). 

  34. X. Xu, L. Jiang, Z. Zhang, Y. Shi, and H. Huang, Genome sequence of a gamma- and UV-ray-resistant Strain, Deinococcus wulumuqiensis R12, Genome Announc., 1, e00206-13 (2013). 

  35. Y. Hu, X. Xu, P. Song, L. Jiang, Z. Zhang, and H. Huang, Draft genome sequence of Deinococcus xibeiensis R13, a new carotenoid-producing strain, Genome Announc., 1, e00987-13 (2013). 

  36. V. G. Stepanov, P. Vaishampayan, K. Venkateswaran, and G. E. Fox, Draft genome sequence of Deinococcus phoenicis, a novel strain isolated during the phoenix lander spacecraft assembly, Genome Announc., 2, e00301-14 (2014). 

  37. K. Satoh, T. Onodera, K. Omoso, K. T. Yano, T. Katayama, Y. Oono, and I. Narumi, Draft genome sequence of the radioresistant bacterium Deinococcus grandis, isolated from freshwater fish in Japan, Genome Announc., 4, e01631-15 (2016). 

  38. J. A. Imlay, Cellular defenses against superoxide and hydrogen peroxide, Annu. Rev. Biochem., 77, 755-776 (2008). 

  39. M. M. Cox, J. L. Keck, and J. R. Battista, Rising from the Ashes: DNA Repair in Deinococcus radiodurans, PLoS Genet., 6, e1000815 (2010). 

  40. D. Ghosal, M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, A. Venkateswaran, M. Zhai, H. M. Kostandarithes, H. Brim, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, and M. J. Daly, How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress, FEMS Microbiol. Rev., 29, 361-375 (2005). 

  41. K. Zahradka, D. Slade, A. Bailone, S. Sommer, D. Averbeck, M. Petranovic, A. B. Lindner, and M. Radman, Reassembly of shattered chromosomes in Deinococcus radiodurans, Nature, 443, 569-573 (2006). 

  42. E. Griffiths and R. S. Gupta, Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum, Int. Microbiol., 10, 201-208 (2007). 

  43. A. M. Earl, M. M. Mohundro, I. S. Mian, and J. R. Battista, The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression, J. Bacteriol., 184, 6216-6224 (2002). 

  44. Y. Hua, I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, and B. Shen, PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans, Biochem. Biophys. Res. Commun., 306, 354-360 (2003). 

  45. H. Lu, G. Gao, G. Xu, L. Fan, L. Yin, B. Shen, and Y. Hua, Deinococcus radiodurans PprI switches on DNA damage-response and cellular survival networks after radiation damage, Mol. Cell. Proteom., 8, 481-494 (2009). 

  46. Y. Wang, Q. Xu, H. Lu, L. Lin, L. Wang, H. Xu, X. Cui, H. Zhang, T. Li, and Y. Hua, Protease activity of PprI facilitates DNA damage response: $Mn^{(2+)}$ -dependence and substrate sequence-specificity of the proteolytic reaction, PLoS One, 10, e0122071 (2015). 

  47. M. Ludanyi, L. Blanchard, R. Dulermo, G. Brandelet, L. Bellanger, D. Pignol, D. Lemaire, and A. de Groot, Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO, Mol. Microbiol., 94, 434-449 (2014). 

  48. A. Devigne, S. Ithurbide, T. C. Bouthier, F. Passot, M. Mathieu, S. Sommer, and P. Servant, DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium, Mol. Microbiol., 96, 1069-1084 (2015). 

  49. L. Wang, X. Guangzhi, H. Chen,Y. Zhao, N. Xu, B. Tian, and Y. Hua, DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans, Mol. Microbiol., 67, 1211-1222 (2008). 

  50. S. S. Desai, Y. S. Rajpurohit, H. S. Misra, and D. N. Deobagkar, Characterization of the role of the RadS/RadR two-component system in the radiation resistance of Deinococcus radiodurans, Microbiology, 157, 2974-2982 (2011). 

  51. C. H. Tsai, R. Liao, B. Chou, and L. M. Contreras, Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation, Appl. Environ. Microbiol., 81, 1754-1764 (2015). 

  52. A. Martinez and R. Kolter, Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps, J. Bacteriol., 179, 5188-5194 (1997). 

  53. J. K. Fredrickson, S. M. Li, E. K. Gaidamakova, V. Y. Matrosova, M. Zhai, H. M. Sulloway, J. C. Scholten, M. G. Brown, D. L. Balkwill, and M. J. Daly, Protein oxidation: key to bacterial desiccation resistance?, ISME J., 2, 393-403 (2008). 

  54. M. J. Daly, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M. V. Omelchenko, H. M. Kostandarithes, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, and D. Ghosal, Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance, Science, 306, 1025-1028 (2004). 

  55. M. J. Daly, E. K. Gaidamakova, V. Y. Matrosova, J. G. Kiang, R. Fukumoto, D. Y. Lee, N. B. Wehr, G. A. Viteri, B. S. Berlett, and R. L. Levine, Small-molecule antioxidant proteome-shields in Deinococcus radiodurans, PLoS One, 5, e12570 (2010). 

  56. L. Lemee, E. Peuchant, M. Clerc, M. Brunner, and H. Pfander, Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans, Tetrahedron, 53, 919-926 (1997). 

  57. L. Zhang, Q. Yang, X. Luo, C. Fang, Q. Zhang, and Y. Tang, Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability, Arch. Microbiol., 188, 411-419 (2007). 

  58. B. Tian, Z. Xu, Z. Sun, J. Lin, and Y. Hua, Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses, Biochim. Biophys. Acta, 1770, 902-911 (2007). 

  59. D. Appukuttan, A. S. Rao, and S. K. Apte, Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste, Appl. Environ. Microbiol., 72, 7873-7878 (2006). 

  60. H. Brim, S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly, Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments, Nat. Biotechnol., 18, 85-90 (2000). 

  61. C. C. Lange, L. P. Wackett, K. W. Minton, and M. J. Daly, Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments, Nat. Biotechnol., 16, 929-933 (1998). 

  62. G. Raghu, S. S Singh, S. K. Lunavat, M. M. Pamarthi, A. Rodrigue, B. Vadivelu, P. B. Phanithi, V. Gopala, and S. K. Apte, Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors, Appl. Microbiol. Biotechnol., 99, 9203-9213 (2015). 

  63. L. Newsome, K. Morris, and J. R. Lloyd, The biogeochemistry and bioremediation of uranium and other priority radionuclides, Chem. Geol., 363, 164-184 (2014). 

  64. L. Xiangqian, X. Huizhong, Z. S. Chen, and G. Chen, Biosynthesis of Nanoparticles by Microorganisms and Their Applications, J. Nanomater, 2011, 1-16 (2011). 

  65. M. H. Choi, H. E. Shim, S. J. Yun, S. H. Park, D. S. Choi, B. S. Jang, Y. J. Choi, and J. J. Jeon, Gold-nanoparticle-immobilized Desalting columns for highly efficient and specific removal of radioactive iodine in aqueous media, ACS Appl. Mater. Interfaces, 8, 29227-29231 (2016). 

  66. L. Du, H. Jiang, X. Liu, and E. Wang, Biosynthesis of gold nanoparticles assisted by Escherichia coli $DH5{\alpha}$ and its application on direct electrochemistry of hemoglobin. Electrochem. Commun., 9, 1165-1170 (2007). 

  67. M. I. Husseiny, M. A. El-Aziz, Y. Badr, and M. A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochim. Acta A, 67, 1003-1006 (2007). 

  68. S. Bose, M. F. Hochella, Y. A. Gorby, D. W. Kennedy, D. E. McCready, A. S. Madden, and B. H. Lower, Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta, 73, 962-976 (2009). 

  69. M. M. G. Babu and P. Gunasekaran, Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate, Colloids Surf. B, 74, 191-195 (2009). 

  70. S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate, Mater. Lett., 61, 3984-3987 (2007). 

  71. R. R. Kulkarni, N. S. Shaiwale, D. N. Deobagkar, and D. D. Deobagkar, Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity, Int. J. Nanomed., 10, 963-974 (2015). 

  72. J. Li, Q. Li, X. Ma, B. Tian, T. Li, J. Yu, S. Dai, Y. Weng, and Y. Hua, Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties, Int. J. Nanomed., 11, 5931-5944 (2016). 

  73. C. S. Misra, D. Appukuttan, V. S. Kantamreddi, A. S. Rao, and S. K. Apte, Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes, Bioeng. Bugs, 3, 44-48 (2012). 

  74. J. K. Fredrickson, H. M. Kostandarithes, S. W. Li, A. E. Plymale, and M. J. Daly, Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1, Appl. Environ. Microbiol., 66, 2006-2011 (2000). 

  75. R. B. Payne, D. M. Gentry, B. J. Rapp-Giles, L. Casalot, and J. D. Wall, Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant, Appl. Environ. Microbiol., 68, 3129-3132 (2002) 

  76. D. R. Lovley and E. J. Phillips, Reduction of uraniumby Desulfovibrio desulfuricans, Appl. Environ. Microbiol., 58, 850-856 (1992). 

  77. K. S. Nilgiriwala, A. Alahari, A. S. Rao, and S. K. Apte, Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions, Appl. Environ. Microbiol., 74, 5516-5523 (2008). 

  78. A. S. Madden, A. I. Swindle, M. J. Beazley, J. W. Moon, B. Ravel, and T. J. Phelps, Longterm solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter, Am. Mineral., 97, 1641-1652 (2012). 

  79. T. V. Khijniak, A. I. Slobodkin, V. Coker, J. C. Renshaw, F. R. Livens, E. A. Bonch-Osmolovskaya, N. K. Birkeland, N. N. Medvedeva-Lyalikova, and J. R. Lloyd, Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens, Appl. Environ. Microbiol., 71, 6423-6426 (2005). 

  80. L. E. Macaskie, R. M. Empson, A. K. Cheetham, C. P. Grey, and A. J. Skarnulis, Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline $HUO_2PO_4$ , Science, 257, 782-784 (1992). 

  81. J. R. Lloyd, C. Leang, C., A. L. Hodges Myerson, M. V. Coppi, S. Cuifo, B. Methe, S. J. Sandler, and D. R. Lovely, Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens, Biochem. J., 369, 153-161 (2003). 

  82. J. R. Lloyd, P. Yong, and L. E. Macaskie, Biological reduction and removal of Np(V) by two microorganisms, Environ. Sci. Technol., 34, 1297-1301 (2000). 

  83. J. R. Lloyd, J. Ridley, T. Khizniak, N. N. Lyalikova, and L. E. Macaskie, Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor, Appl. Environ. Microbiol., 65, 2691-2696 (1999). 

  84. N. N. Lyalikova and T. V. Khizhnyak, Reduction of heptavalent technetium by acidophilic bacteria of the genus Thiobacillus, Microbiology, 65, 468-473 (1996). 

  85. M. J. Marshall, A. C. Dohnalkova, D. W. Kennedy, A. E. Plymale, S. H. Thomas, F. E. Loffler, R. A. Sanford, J. M. Zachara, J. K. Fredrickson, and A. S. Beliaev, Electron donordependent radionuclide reduction and nanoparticle formation by Anaeromyxobacter dehalogenans strain 2CP-C, Environ. Microbiol., 11, 534-543 (2009). 

  86. H. Boukhalfa, G. A. Icopini, S. D. Reilly, and M. P. Neu, Plutonium (IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1, Appl. Environ. Microbiol., 73, 5897-5903 (2007). 

  87. B. Luksiene, R. Druteikiene, D. Peciulyte, D. Baltrunas, V. Remeikis, and A. Paskevicius, Effect of microorganisms on the plutonium oxidation states, Appl. Radiat. Isot., 70, 442-449 (2012). 

  88. L. E. Macaskie, B. C. Jeong, and M. R. Tolley, Enzymically accelerated biomineralization of heavy metals: Application to the removal of americium and plutonium from aqueous flows, FEMS Microbiol. Rev., 14, 351-367 (1994). 

  89. T. Councell, E. Landa, and D. Lovley, Microbial reduction of iodate, Water Air Soil Pollut., 100, 99-106 (1997). 

  90. S. Anderson and V. D. Appanna, Microbial formation of crystalline strontium carbonate, FEMS Microbiol. Lett., 116, 43-48 (1994). 

  91. V. Achal, X. Pan, and D. Zhang, Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp, Chemosphere, 89, 764-768 (2012). 

  92. F. G. Ferris, C. M. Fratton, J. P. Gerits, S. Schultze-Lam, and B. S. Lollar, Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada, Geomicrobiol. J., 13, 57-67 (1995). 

  93. D. L. Vullo, H. M. Ceretti, E. A. Hughes, S. Ramyrez, and A. Zalts, Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E, Bioresour. Technol., 99, 5574-5581 (2008). 

  94. H. Guo, S. Luo, L. Chen, X. Xiao, Q. Xi, W. Wei, G. Zeng, C. Liu, Y. Wan, J. Chen, and Y. He, Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14, Bioresour. Technol., 101, 8599-8605 (2010). 

  95. V. Achal, X. Pan, and D. Zhang, Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation, Ecol. Eng., 37, 1601-1605 (2011). 

  96. K. Hrynkiewicz, G. Dabrowska, C. Baum, K. Niedojadlo, and P. Leinweber, Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by Willows, Water Air Soil Pollut., 223, 957-968 (2012). 

  97. V. Achal, X. Pan, Q. Fu, and D. Zhang, Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J. Hazard. Mater., 201-202, 178-184 (2012). 

  98. P. Kanmani, J. Aravind, and D. Preston, Remediation of chromium contaminants using bacteria, Int. J. Environ. Sci. Technol., 9, 183-193 (2012). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로