$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Prediction of Arsenic Uptake by Rice in the Paddy Fields Vulnerable to Arsenic Contamination 원문보기

Korean journal of Soil Science and Fertilizer, v.50 no.2, 2017년, pp.115 - 126  

Lee, Seul (Chemical Safety Division, National Institute of Agricultural Science) ,  Kang, Dae-Won (Chemical Safety Division, National Institute of Agricultural Science) ,  Kim, Hyuck-Soo (Chemical Safety Division, National Institute of Agricultural Science) ,  Yoo, Ji-Hyock (Chemical Safety Division, National Institute of Agricultural Science) ,  Park, Sang-Won (Chemical Safety Division, National Institute of Agricultural Science) ,  Oh, Kyeong-Seok (Chemical Safety Division, National Institute of Agricultural Science) ,  Cho, Il Kyu (Bio Control Research Center, Jeonnam Bioindustry Foundation) ,  Moon, Byeong-Churl (Chemical Safety Division, National Institute of Agricultural Science) ,  Kim, Won-Il (Chemical Safety Division, National Institute of Agricultural Science)

Abstract AI-Helper 아이콘AI-Helper

There is an increasing concern over arsenic (As) contamination in rice. This study was conducted to develope a prediction model for As uptake by rice based on the physico-chemical properties of soil. Soil and brown rice samples were collected from 46 sites in paddy fields near three different areas ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 71**으로 강한 양의 상관관계를 확인하였다. 그리하여 본 연구에서 지정한 비소 오염 농경지내 현미 비소 함량을 예측하기 위해서 본 모델식을 적용할 수 있다고 판단된다.
  • , 2004). 따라서 본 연구에서는 폐광산 및 공단 인근 비소오염 농경지의 안전한 농산물 생산과 효율적인 토양관리방안을 모색하고자 현미 중 비소함량과 토양 비소 총 함량, 비소 유효태 농도, 토양 특성 인자간의 상관관계분석 및 다중회귀분석을 실시하였고, 이를 바탕으로 현미 중 비소 함량 예측 모델식을 제시하고 검증하고자 하였다.
  • 본 연구에서는 비소오염 농경지에서 안전한 농산물 생산과 효율적인 토양관리방안을 모색하고자 토양 중 함량 및 화학성을 고려한 현미 중 비소 함량 예측 모델식을 개발 하였다. 국내 비소취약 오염농경지 토양 및 현미 46점을 채취하여 현미 및 토양 중 비소 함량을 분석하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (49)

  1. Abernathy, C.O., Y.P. Liu, D. Longfellow, H.V. Aposhian, B. Beck, B. Fowler, R. Goyer, R. Menzer, T. Rossman, C. Thompson, and M. Waalkes. 1999. Arsenic: Health effects, mechanism of action, and research issues. Environ. Health Perspect. 107:593-597. 

  2. Adriano, D.C. 1986. Trace Elements in the Terrestrial Environment. Spinger Verlag. 

  3. Codex Alimentarius Commission (CAC). 2014. Joint FAO/WHO Food Standards Programme. 37th Session Report. 

  4. Codex Alimentarius Commission (CAC). 2016. Joint FAO/WHO Food Standards Programme. 39th Session Report. 

  5. De Vries, W., M.J. McLaughlin, and J.E. Groenenberg. 2011. Transfer functions for solid-solution partitioning of cadmium for Australian soils. Environ. Pollut. 159:3583-3594. 

  6. Deutsches Institute fur Normung (DIN). 1995. Soil Quality Extraction of Trace Elements with Ammonium Nitrate Solution. DIN 19730. Beuth Verlag, Berlin, Germany. 

  7. Duker, A.A., E.J.M. Carranza, and M. Hale. 2005. Arsenic geochemistry and health. Environ. Int. 31:631-641 

  8. Fitz, W.J., and W.W. Wenzel. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99:259-278. 

  9. Groenenberg, J.E., P.F.A.M. Romkens, R.N.J. Comans, J. Luster, T. Pampura, L. Shotbolt, E. Tipping, and W. De Vries. 2010. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data. Eur. J. Soil Sci. 61:58-73. 

  10. Harvey, C.F., C.H. Swartz, A.B.M. Badruzzaman, N. Keon-Blute, W. Yu, M.A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P.M. Oates, K.N. Ashfaque, S. Islam, H.F. Hemond and M.F. Ahmed. 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science. 298:1602-1606. 

  11. Huang, R.Q., S.F. Gao, W.L. Wang, S. Staunton and G. Wang. 2006. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, Southeast China. Sci. Total Environ. 368:531-541. 

  12. Johnson, M.O., H.H.P. Cohly, R.D. Isokpehi, and O.R. Awofolu. 2010. The case for visual analytics of arsenic concentration in food. Int. J. Environ. Res. Public Health. 7(5):1970-1983. 

  13. Kabata-Pendias, A. and H. Pendias. 1984. Trace Elements in Soils and Plants. CRC Press, Inc. 

  14. Kang, S.S., A.S. Ahn, S.C. Choi, Y.S. Kim, H.J. Kim, M.T. Choi, B.K. Ahn, H.W. Kim, H.K. Kim, J.H. Park, Y.H. Lee, S.H. Yang, J.S.Ryu, Y.S. Jang, M.S. Kim, Y.K. Sonn, C.H. Lee, S.G. Ha, D.B. Lee, and Y.H. Kim. 2012. Status and changes in chemical properties of paddy soil in Korea. Korean J. Soil Sci. Fert. 45(6):968-972. 

  15. Kim, J.Y., J.H. Lee, A. Kunhikrishnan, D.W. Kang, M.J. Kim, J.H. Yoo, D.H. Kim, Y.J. Lee, and W.I. Kim. 2012. Transfer factor of heavy metals from agricultural soil to agricultural products. Korean J. Environ. Agric. 31(4):300-307. 

  16. Kim, K.J. and P.K. Sahoo. 2013. A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosciences J. 17(1):107-122. 

  17. Kim, K.R., G. Owens, R. Naidu, and K.H. Kim. 2007. Assessment techniques of heavy metal bioavailability in soil: a critical review. Korean J. Soil Sci. Fert. 40(4):311-325. 

  18. Kim, W.I., J.J. Kim, J.H. Yoo, J.Y. Kim, J.H. Lee, M.K. Paik, R.Y. Kim, and G.J. Im. 2010. Arsenic Fractionation and bioavailability in paddy soils near closed mine in Korea. Korean J. Soil Sci. Fert. 43(6):917-922. 

  19. Kim, W.I., J.J. Kim, J.H. Yoo, J.Y. Kim, J.H. Lee, M.K. Paik, R.Y. Kim, G.J. Im. 2010. Arsenic fractionation and bioavailability in paddy soils near closed mines in Korea. Korean J. Soil Sci. Fert. 43(6):917-922. 

  20. Koh, I.H., S.H. Lee, W.S. Lee, and Y.Y. Chang. 2013. Assessment on the transition of arsenic and heavy metal from soil to plant according to stabilization process using limestone and steelmaking slag. J. Soil Groundwater Env.18(7):63-72. 

  21. Kunhikrishnan, A., W.R. Go, J.H. Park, K.R. Kim, H.S. Kim, K.H. Kim, W.I. Kim, and N.J. Cho. 2015. Heavy metal(loid) levels in paddy soils and brown rice in Korea. Korean J. Soil Sci. Fert. 48(5):515-521. 

  22. Lim, G.H., K.H. Kim, B.H. Seo, and K.R. Kim. 2014. Transfer function for phytoavailable heavy metals in contaminated agricultural soils: the case of the Korean agricultural soils affected by the abandoned mining sites. Korean J. Environ. Agric. 33(4):271-281. 

  23. Lim, G.H., K.H. Kim, B.H. Seo, and K.R. Kim. 2015. Heavy metal accumulation in edible part of eleven crops cultivated in metal contaminated soils and their bio-concentration factor. Korean J. Environ. Agric. 34(4):260-267. 

  24. Lund, U. and A. Fobian. 1991. Pollution of two soils by arsenic, chromium and copper, Denmark. Geoderma. 49:83-103. 

  25. Mandal, B.K. and K.T. Suzuki. Arsenic round the world : a review. Talanta. 58:201-235 

  26. Manning, B.A. and S. Goldberg. 1997. Arsenic(III) and arsenic (V) adsorption on three California soils. Soil Sci. 162(12):886-895. 

  27. Martinez, V.D., E.A. Vucic, D.D. Becker-Santos, L. Gil, and W.L. Lam. 2011. Arsenic exposure and the induction of human cancers. J. Toxicol. Doi:10.1155/2011/431287. 

  28. McLaughlin, M,J., R.E. Hamon, R.G. McLaren, T.W. Speir, and S.L. Rogers. 2000. Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil Res. 38(6):1037-1086. 

  29. Mehlich, A. 1984. Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416. 

  30. MIne REclamation COrp (MIRECO). 2013. Yearbook of MIRECO Statistics (2012). Mine Reclamation Corporation. Korea. 

  31. Minister Of Environment (MOE). 2002. Soil Environment Conservation Act. Minister of Environment. Korea. 

  32. Minister Of Environment (MOE). 2010. Soil Environment Conservation Act. Minister of Environment. Korea. 

  33. Minister Of Environment (MOE). 2012. Soil Monitoring System and Soil Pollution Survey in 2012. Ministry of Environment. Korea. 

  34. NAAS (National Academy of Agricultural Science). 2010. Analysis methods for soil chemical properties. Publication No. 11-1390802-000282-01, NAAS. Korea. 

  35. Ng, J.C., J. Wang, and A. Shraim. 2003. A global health problems caused by arsenic from natural sources. Chemosphere. 52:1353-1359. 

  36. Noh, Y.D., K.R. Kim, W.I. Kim, K.Y. Jung, and C.O. Hong. 2015. Effect of soil chemical properties on phytoavailability of arsenic, cadmium and lead in medicinal plant fields. J. Agric. Life Sci. 49(5):267-277. 

  37. O'Neill, P. 1990. Arsenic. In: Heavy Metals in Soils, B.J. Allowway, ed. John Wiley and Sons, Inc., N.Y. 

  38. Park, S.W. J.S. Yang, S.W. Ryu, D.Y. Kim, J.D. Shin, W.I. Kim, J.H. Choi, S.L. Kim, and A.F. Saint. 2009. Uptake and translocation of heavy metals to rice plant on paddy soils in "Top-rice" cultivation areas. Korean J. Environ. Agri. 28(2):131-138. 

  39. Peryea, F.J. and R. Kammereck. 1997. Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water, Air, Soil Pollut. 93:243-254. 

  40. Schwertmann, U. 1973. Use of oxalate for Fe extraction from soils. Can. J. Soil Scil. 53:244-246. 

  41. Selim Reza, A.H.M., J.S. Jean, H.J. Yang, M.K. Lee, B. Woodall, C.C. Liu, J.F. Lee, and S.D. Luo. 2010. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Water Res. 44(6):2021-2037. 

  42. Smith, E., R. Naidu, and A.M. Alston. 1999. Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils. J. Environ. Qual. 28(6):1719-1726. 

  43. Takahashi, Y., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou, and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 38(4):1038-1044. 

  44. Tchounwou, P.B., A.K. Patlolla, and J.A. Centeno. 2003. Carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicol. Pathol. 31:575-588. 

  45. Turpeinen, R., M. Pantsar-Kallio, M. Haggblom, and T. Kairesalo. 1999. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci. Total Environ, 236:173-180. 

  46. Tyler, G., and T. Olsson. 2001. Concentration of 60 elements in the soil solution as related to the soil acidity. Eur. J. Soil Sci. 52(1):151-165. 

  47. United States Environmental Protection Agency (US EPA). 1998. Environ Protection Act. 

  48. Wang, X.P., X.Q. Shan, S.Z. Zhang, and B. Wen. 2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55:811-822. 

  49. Yoon, J.K., D.H. Kim, T.S. Kim, J.G. Park, I.R. Chung, J.H. Kim, and H. Kim. 2009. Evaluation on natural background of the soil heavy metals in Korea. J. Soil Groundwater Env. 14(3) : 32-39. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로