$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

말디토프 질량분석을 이용한 고분자의 특성분석
Analysis of Polymer Characteristics Using Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry 원문보기

공업화학 = Applied chemistry for engineering, v.28 no.3, 2017년, pp.263 - 271  

강민정 (한국과학기술연구원 미래융합기술연구본부, 분자인식연구센터) ,  성윤서 (한국과학기술연구원 미래융합기술연구본부, 분자인식연구센터) ,  김문주 (연세대학교 신소재공학과) ,  김명수 (한국과학기술연구원 미래융합기술연구본부, 분자인식연구센터) ,  변재철 (연세대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

최근에, 질량분석기술의 폴리머 분석에의 응용은 MALDI-TOF MS 개발 이후 급속도로 발전하였다. 이 리뷰 논문은 현재까지 연구된 MALDI-TOF MS의 폴리머 특성분석에의 응용에 관한 최신 논문을 정리하였다. MALDI-TOF MS는 바이오 폴리머와, 합성 폴리머의 평균분자량 분석, 폴리머의 시퀀스 분석을 통한 구조의 해석, 모노머의 조성분석에까지 이용되고 있다. 엔드그룹의 특성과 농도를 분석하는 연구도 많이 진행되었고, 복잡한 폴리머의 분자량의 분석에는 SEC와 MALDI-TOF MS를 연결한 분석법을 추천한다. MALDI에 tandem MS를 결합한 분석기술이나, 이온 모빌리티를 응용한 질량분석기, TOF-SIMS, MALDI-TOF-Imaging 기술도 급격히 발전하고 있으며, 이의 폴리머 특성분석에의 응용은 별도의 분리기술이 필요 없어 앞으로 더 많이 이용될 것으로 생각된다. 분자량, 시퀀스, 그리고 모노머의 조성을 정확하게 계산해주는 소프트웨어와 고분자량(> 100 kDa)의 분석을 가능하게 해주는 기술이 개발된다면, 폴리머를 연구하는 과학자들에게 MALDI-TOF MS의 이용은 문제점을 해결하고, 목적하는 폴리머를 합성하는 데 중요한 수단이 될 것이다.

Abstract AI-Helper 아이콘AI-Helper

The application of mass spectrometry to polymer science has rapidly increased since the development of MALDI-TOF MS. This review summarizes current polymer analysis methods using MALDI-TOF MS, which has been extensively applied to analyze the average molecular weight of biopolymers and synthetic pol...

주제어

참고문헌 (75)

  1. G. Montaudo, F. Samperi, and M. S. Montaudo, Characterization of synthetic polymers by MALDI-MS, Prog. Polym. Sci., 31, 277-357 (2006). 

  2. C. Wesdemiotis, N. Solak, M. J. Polce, D. E. Dabney, K. Chaicharoen, and B. C. Katzenmeyer, Fragmentation pathways of polymer ions, Mass Spectrom. Rev., 30, 523-559 (2011). 

  3. D. Kou, G. Manius, S. Zhan, and H. P. Chokshi, Size exclusion chromatography with Corona charged aerosol detector for the analysis of polyethylene glycol polymer, J. Chromatogr. A, 1216, 5424-5428 (2009). 

  4. P. R. Z. Grubisic and H. Benoit, A universal calibration for gel permeation chromatography, J. Polym. Sci. B, 5, 753-759 (1967). 

  5. S. R. Tatro, G. R. Baker, R. Fleming, and J. P. Harmon, Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry: determining Mark-Houwink-Sakurada parameters and analyzing the breadth of polymer molecular weight distributions, Polymer, 43, 2329-2335 (2002). 

  6. N. O. Pretorius, K. Rode, J. M. Simpson, and H. Pasch, Analysis of complex phthalic acid based polyesters by the combination of size exclusion chromatography and matrix-assisted laser desorption/ ionization mass spectrometry, Anal. Chim. Acta, 808, 94-103 (2014). 

  7. B. K. Myers, B. Zhang, J. E. Lapucha, and S. M. Grayson, The characterization of dendronized poly(ethylene glycol)s and poly(ethylene glycol) multi-arm stars using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Anal. Chim. Acta, 808, 175-189 (2014). 

  8. F. Karaca, M. Millan, M. Behrouzi, A. A. Herod, and R. Kandiyoti, The size exclusion chromatography calibration of 'Mixed-A' and 'Mixed-D' columns using various polymers and compounds: An application to coal-derived materials, Anal. Chim. Acta, 547, 78-82 (2005). 

  9. W. Fan, X. Fan, W. Tian, X. Zhu, and W. Zhang, Differential analysis on precise determination of molecular weight of triblock copolymer using SEC/MALS and MALDI-TOF MS, Polym. Test., 40, 116-123 (2014). 

  10. T. W. D. Chan, P. K. Chan, and K. Y. Tang, Determination of molecular weight profile for a bioactive ${\beta}$ -(1 ${\rightarrow}$ 3) polysaccharides (Curdlan), Anal. Chim. Acta, 556, 226-236 (2006). 

  11. M. Janco, J. N. 4th Alexander, E. S. Bouvier, and D. Morrison, Ultra-high performance size-exclusion chromatography of synthetic polymers: demonstration of capability, J. Sep. Sci., 36, 2718-2727 (2013). 

  12. E. Tisdale and C. Wilkins, Method development for compositional analysis of low molecular weight poly(vinyl acetate) by matrix-assisted/ laser desorption-mass spectrometry and its application to analysis of chewing gum, Anal. Chim. Acta, 820, 92-103 (2014). 

  13. B. Zhang, H. Zhang, B. K. Myers, R. Elupula, J. Jayawickramarajah, and S. M. Grayson, Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ ionization time-of-flight mass spectrometry, Anal. Chim. Acta, 816, 28-40 (2014). 

  14. G. Adamus, P. Rizzarelli, M. S. Montaudo, M. Kowalczuk, and G. Montaudo, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with size-exclusion chromatographic fractionation for structural characterization of synthetic aliphatic copolyesters, Rapid Commun. Mass Spectrom., 20, 804-814 (2006). 

  15. J. G. Kim, J. H. Kim, B.-J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016). 

  16. J.-Y. Choi, D.-I. Lee, C.-J. Kim, C.-H. Lee, and I.-S. Ahn, Synthesis of PEG hydrogel with dityrosine for multi-functionality and pH-dependent fluorescence, J. Ind. Eng. Chem., 18, 611-616 (2012). 

  17. A. P. Kafka, T. Kleffmann, T. Rades, and A. McDowell, The application of MALDI TOF MS in biopharmaceutical research, Int. J. Pharm., 417, 70-82 (2011). 

  18. M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem., 60, 2299-2301 (1988). 

  19. T. Gruendling, S. Weidner, J. Falkenhagen, and C. Barner-Kowollik, Mass spectrometry in polymer chemistry: a state-ofthe-art up-date, Polym. Chem., 1, 599-617 (2010). 

  20. F. Hillenkamp, M. Karas, R. C. Beavis, and B. T. Chait, Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers, Anal. Chem., 63, 1193a-1203a (1991). 

  21. C. B. Lietz, A. L. Richards, D. D. Marshall, Y. Ren, and S. Trimpin, Matrix-assisted inlet ionization and solvent-free gas-phase separation using ion mobility spectrometry for imaging and electron transfer dissociation mass spectrometry of polymers. In: C. B. Kowollik, T. Gruendling, J. Falkenhagen and S. Weidner (eds.), Mass Spectrometry in Polymer Chemistry, 85-118, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011). 

  22. P. Rizzarelli and C. Puglisi, Structural characterization of synthetic poly(ester amide) from sebacic acid and 4-amino-1-butanol by matrix-assisted laser desorption ionization time-of-flight/time-of-flight tandem mass spectrometry, Rapid Commun. Mass Spectrom., 22, 739-754 (2008). 

  23. H. Sato, S. Nakamura, K. Teramoto, and T. Sato, Structural characterization of polymers by MALDI spiral-TOF mass spectrometry combined with Kendrick mass defect analysis, J. Am. Soc. Mass Spectrom., 25, 1346-1355 (2014). 

  24. S. Hosseini and S. O. Martinez-Chapa, Principles and mechanism of MALDI-ToF-MS analysis. In: S. Hosseini and S. O. Martinez-Xhapa (eds.), Fundamentals of MALDI-ToF-MS Analysis, 1-19, Springer Singapore, Singapore (2017). 

  25. M. Lopez-Garcia, M. S. D. Garcia, J. M. L. Vilarino, and M. V. G. Rodriguez, MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species, Food Chem., 199, 597-604 (2016). 

  26. O. Y. Abdelaziz, D. P. Brink, J. Prothmann, K. Ravi, M. Sun, J. Garcia-Hidalgo, M. Sandahl, C. P. Hulteberg, C. Turner, G. Liden, and M. F. Gorwa-Grauslund, Biological valorization of low molecular weight lignin, Biotechnol. Adv., 34, 1318-1346 (2016). 

  27. A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, F. Qiu, K. Yamamoto, and S. Yokoyama, An analysis of the structural, thermal and optical characteristics as well as the electrical resistivity of tert-butyldiphenylsilyl substituted poly(norbornene-dicarboximide) s, Polymer, 56, 189-198 (2015). 

  28. R. Wang, W. Liu, L. Fang, and C. Xu, Synthesis, characterization, and properties of novel phenylene-silazane-acetylene polymers, Polymer, 51, 5970-5976 (2010). 

  29. H. Kim, S. D. Dindulkar, D. Jeong, S. Park, B.-H. Jun, E. Cho, and S. Jung, A synthetic encapsulating emulsifier using complex-forming pentacosadiynoyl cyclosophoraoses (cyclic ${\beta}$ -(1, 2)-d-glucan), J. Ind. Eng. Chem., 44, 195-203 (2016). 

  30. A. P. Gies, S. T. Ellison, S. M. Stow, and D. M. Hercules, Matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight collision-induced dissociation study of poly(p-phenylenediamine terephthalamide) fragmentation reactions, Anal. Chim. Acta, 808, 124-143 (2014). 

  31. K. Nishimori, M. Ouchi, and M. Sawamoto, Sequence analysis for alternating copolymers by MALDI-TOF-MS: Importance of initiator selectivity for comonomer pair, Macromol. Rapid Commun., 37, 1414-1420 (2016). 

  32. A. M. Yol, J. Janoski, R. P. Quirk, and C. Wesdemiotis, Sequence analysis of styrenic copolymers by tandem mass spectrometry, Anal. Chem., 86, 9576-9582 (2014). 

  33. P. Rizzarelli, C. Puglisi, and G. Montaudo, Sequence determination in aliphatic poly(ester amide)s by matrix-assisted laser desorption/ ionization time-of-flight and time-of-flight/time-of-flight tandem mass spectrometry, Rapid Commun. Mass Spectrom., 19, 2407-2418 (2005). 

  34. S. G. Sreerama, R. Elupula, B. A. Laurent, B. Zhang, and S. M. Grayson, Use of MALDI-ToF MS to elucidate the structure of oligomeric impurities formed during 'click' cyclization of polystyrene, React. Funct. Polym., 80, 83-94 (2014). 

  35. A. M. Yol, D. E. Dabney, S. F. Wang, B. A. Laurent, M. D. Foster, R. P. Quirk, S. M. Grayson, and C. Wesdemiotis, Differentiation of linear and cyclic polymer architectures by MALDI tandem mass spectrometry (MALDI-MS2), J. Am. Soc. Mass Spectrom., 24, 74-82 (2013). 

  36. A. T. Jackson, H. T. Yates, J. H. Scrivens, M. R. Green, and R. H. Bateman, Utilizing matrix-assisted laser desorption/ionization-collision induced dissociation for the generation of structural information from poly(alkyl methacrylate)s, J. Am. Soc. Mass Spectrom., 8, 1206-1213 (1997). 

  37. S. M. Miladinovic, C. J. Kaeser, M. M. Knust, and C. L. Wilkins, Tandem Fourier transform mass spectrometry of block and random copolymers, Int. J. Mass spectrom., 301, 184-194 (2011). 

  38. D.-I. Lee, C.-J. Kim, C.-H. Lee, and I.-S. Ahn, Synthesis of a fluorescent and star-shaped 4-arm PEG with different functional groups at its ends, J. Ind. Eng. Chem., 18, 1186-1190 (2012). 

  39. M. Florczak, A. Michalski, A. Kacprzak, M. Brzezinski, T. Biedron, A. Paj?k, P. Kubisa, and T. Biela, MALDI-TOF analysis of lactide oligomers with functional end groups, React. Funct. Polym., 104, 71-77 (2016). 

  40. Y. Li, J. N. Hoskins, S. G. Sreerama, and S. M. Grayson, MALDI-TOF mass spectral characterization of polymers containing an azide group: Evidence of metastable ions, Macromolecules, 43, 6225-6228 (2010). 

  41. L. Y. Kong, B. G. Su, Z. B. Bao, H. B. Xing, Y. W. Yang, and Q. L. Ren, Direct quantification of mono- and di-d- ${\alpha}$ -tocopherol polyethylene glycol 1000 succinate by high performance liquid chromatography, J. Chromatogr. A, 1218, 8664-8671 (2011). 

  42. L. Prokai, Electrospray ionization (ESI-MS) and on-line liquid chromatography/mass spectrometry (LC/MS). In: G. Montaudo and R. P. Lattimer (eds.). Mass Spectrometry of Polymers, 149-175, CRC Press, Boca Raton, FL, USA (2001). 

  43. J. B. Fenn, Electrospray wings for molecular elephants (Nobel lecture), Angew. Chem. Int. Ed., 42, 3871-3894 (2003). 

  44. Z. Lin, D. Wang, A. Peng, and Z. Huang, HPLC determination of domoic acid in shellfish based on magnetic molecularly imprinting polymers, Int. J. Polym. Anal. Charact., 22, 202-209 (2017). 

  45. Z. Fekete, T. Rofusz, V. Angyal, P. Szabo-Revesz, and Z. Aigner, Gas chromatographic-mass spectrometric analysis and subsequent quality improvement of plastic infusion packaging materials, J. Pharm. Biomed. Anal., 97, 111-115 (2014). 

  46. G. Mitchell, C. Higgitt, and L. T. Gibson, Emissions from polymeric materials: Characterised by thermal desorption-gas chromatography, Polym. Degrad. Stab., 107, 328-340 (2014). 

  47. V. G. Zaikin, R. S. Borisov, N. Y. Polovkov, D. I. Zhilyaev, A. A. Vinogradov, and A. V. Ivanyuk, Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/ mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization, Eur. J. Mass Spectrom. (Chichester), 19, 163-173 (2013). 

  48. V. Becerra, J. Odermatt, and M. Nopens, Identification and classification of glucose-based polysaccharides by applying Py-GC/MS and SIMCA, J. Anal. Appl. Pyrolysis, 103, 42-51 (2013). 

  49. J. Falkenhagen and S. Weidner, Hyphenated techniques. In: C. B. Kowollik, T. Gruendling, J. Falkenhagen and S. Weidner (eds.), Mass Spectrometry in Polymer Chemistry, 209-235, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011). 

  50. S. Crotty, S. Gerislioglu, K. J. Endres, C. Wesdemiotis, and U. S. Schubert, Polymer architectures via mass spectrometry and hyphenated techniques: A review, Anal. Chim. Acta, 932, 1-21 (2016). 

  51. E. Altuntas and U. S. Schubert, "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: A review, Anal. Chim. Acta, 808, 56-69 (2014). 

  52. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, and T. Matsuo, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom., 2, 151-153 (1988). 

  53. A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, F. Qiu, K. Yamamoto, and S. Yokoyama, An analysis of the structural, thermal and optical characteristics as well as the electrical resistivity of tert-butyldiphenylsilyl substituted poly(norbornene-dicarboximide) s, Polymer, 56, 189-198 (2015). 

  54. W.-C. Oh and W.-B. Ko, Characterization and photonic properties for the Pt-fullerene/ $TiO_2$ composites derived from titanium (IV) n-butoxide and C60, J. Ind. Eng. Chem., 15, 791-797 (2009). 

  55. S. Zappia, R. Mendichi, S. Battiato, G. Scavia, R. Mastria, F. Samperi, and S. Destri, Characterization of amphiphilic block-copolymers constituted of a low band gap rigid segment (PCPDTBT) and P4VP based coil block synthesized by two different strategies, Polymer, 80, 245-258 (2015). 

  56. A. Marie, F. Fournier, and J. C. Tabet, Characterization of synthetic polymers by MALDI-TOF/MS: investigation into new methods of sample target preparation and consequence on mass spectrum finger print, Anal. Chem., 72, 5106-5114 (2000). 

  57. H. Brandt, T. Ehmann, and M. Otto, Toward prediction: using chemometrics for the optimization of sample preparation in MALDI-TOF MS of synthetic polymers, Anal. Chem., 82, 8169-8175 (2010). 

  58. A. P. Gies, Ionization techniques for polymer mass spectrometry. In: C. B. Kowollik, T. Gruendling, J. Falkenhagen and S. Weidner (eds.), Mass Spectrometry in Polymer Chemistry, 33-56, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011). 

  59. X. Yang, T. Wu, B. Liu, Y. Du, H. Li, S. Zhao, and Y. Lu, Matrix selection for polymer guanidine analysis by MALDI-TOF MS, Int. J. Mass Spectrom., 356, 1-6 (2013). 

  60. E. Altuntas, C. Weber, K. Kempe, and U. S. Schubert, Comparison of ESI, APCI and MALDI for the (tandem) mass analysis of poly(2-ethyl-2-oxazoline)s with various end-groups, Eur. Polym. J., 49, 2172-2185 (2013). 

  61. S. J. Wetzel, C. M. Guttman, K. M. Flynn, J. J. Filliben, Significant parameters in the optimization of MALDI-TOF-MS for synthetic polymers, J. Am. Soc. Mass. Spectrom., 17, 246-252 (2006). 

  62. C. Chendo, M. Rollet, T. N. T. Phan, S. Viel, D. Gigmes, and L. Charles, Successful MALDI mass spectrometry of poly(4-vinylpyridine) using a solvent-free sample preparation, Int. J. Mass Spectrom., 376, 90-96 (2015). 

  63. T. Wu, H. Hu, D. Jiang, Y. Du, W. Jiang, and H. Wang, Identification of two polyamides (PA11 and PA1012) using pyrolysis-GC/MS and MALDI-TOF MS, Polym. Test., 32, 426-431 (2013). 

  64. E. Altuntas, C. Weber, and U. S. Schubert, Detailed characterization of poly(2-ethyl-2oxazoline)s by energy variable collision-induced dissociation study, Rapid Commun. Mass Spectrom., 27, 1095-1100 (2013). 

  65. E. Altuntas, C. Weber, and U. S. Schubert, Detailed characterization of poly(2-ethyl-2oxazoline)s by energy variable collision-induced dissociation study, Rapid Commun. Mass Spectrom., 27, 1095-1100 (2013). 

  66. K.-J. Liu, NMR studies of polymer solutions. VI. Molecular weight determination of poly(ethylene glycol) by NMR analysis of near-end groups, Die Makromolekulare Chemie, 116, 146-151 (1968). 

  67. D. A. L. Otte, D. E. Borchmann, C. Lin, M. Weck, and K. A. Woerpel, (13)C NMR spectroscopy for the quantitative determination of compound ratios and polymer end groups, Org. Lett., 16, 1566-1569 (2014). 

  68. J. Edward Semple, B. Sullivan, T. Vojkovsky, and K. N. Sill, Synthesis and facile end-group quantification of functionalized PEG azides, J. Polym. Sci. A, 54, 2888-2895 (2016). 

  69. P. Rizzarelli and S. Carroccio, Modern mass spectrometry in the characterization and degradation of biodegradable polymers, Anal. Chim. Acta, 808, 18-43 (2014). 

  70. P. Rizzarelli, M. Cirica, G. Pastorelli, C. Puglisi, and G. Valenti, Aliphatic poly(ester amide)s from sebacic acid and aminoalcohols of different chain length: Synthesis, characterization and soil burial degradation, Polym. Degrad. Stab., 121, 90-99 (2015). 

  71. E. Cossoul, M. Hubert-Roux, M. Sebban, F. Churlaud, H. Oulyadi, and C. Afonso, Evaluation of atmospheric solid analysis probe ionization coupled to ion mobility mass spectrometry for characterization of poly(ether ether ketone) polymers, Anal. Chim. Acta, 856, 46-53 (2015). 

  72. C. Barrere, F. Maire, C. Afonso, and P. Giusti, Atmospheric solid analysis probe-ion mobility mass spectrometry of polypropylene, Anal. Chem., 84, 9349-9354 (2012). 

  73. K. Wien, TOF-SIMS analysis of polymers, Nucl. Instrum. Methods Phys. Res. B, 131, 38-54 (1997). 

  74. A. C. Crecelius, J. Vitz, and U. S. Schubert, Mass spectrometric imaging of synthetic polymers, Anal. Chim. Acta, 808, 10-17 (2014). 

  75. D. Rivas, A. Ginebreda, S. Perez, C. Quero, and D. Barcelo, MALDI-TOF MS imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions, Sci. Total Environ., 566-567, 27-33 (2016). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로