최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기청정기술 = Clean technology, v.23 no.2, 2017년, pp.196 - 204
이근대 (부경대학교 공업화학과) , 박성수 (부경대학교 공업화학과) , 진영읍 (부경대학교 공업화학과) , 홍성수 (부경대학교 화학공학과)
CdZnS/ZnO composite was prepared through low-temperature precipitation and drying method. The property of CdZnS/ZnO as a recyclable photocatalyst for the degradation of rhodamine B (RhB) under visible light irradiation was examined. The sample was characterized by XRD, FE-SEM, XPS, UV-vis DRS and ph...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
반도체 광촉매로서의 TiO2의 장점은 무엇인가? | TiO2, ZnO, Fe2O3, SnO2, WO3, CeO2, ZrO2, MoO3, CdS, ZnS 등을 포함하는 다양한 반도체 물질들이 비교적 작은 밴드갭(band gap)과 적절한 밴드 전위를 지니고 있어 실용가능한 광촉매로 채택되었고 실제로 널리 활용되고 있다[1]. 이와 같은 다양한 반도체 광촉매 중에서도 TiO2는 비교적 강한 산화력, 높은 화학적 안정성 및 내구성 그리고 낮은 독성 및 비용 등으로 인해 현재 광촉매로 가장 널리 사용되고 있다[2]. 그러나 TiO2는 비교적 큰 밴드갭으로 인해 자외선에 의해서만 활성화될 수 있다는 문제점을 지니고 있어, 광촉매 반응에서 궁극적으로 목표로 하는 가시광선용 광촉매로 활용하는데에 있어서는 한계점을 지니고 있다. | |
반도체 광촉매로서의 TiO2의 문제점과 한계점은 무엇인가? | 이와 같은 다양한 반도체 광촉매 중에서도 TiO2는 비교적 강한 산화력, 높은 화학적 안정성 및 내구성 그리고 낮은 독성 및 비용 등으로 인해 현재 광촉매로 가장 널리 사용되고 있다[2]. 그러나 TiO2는 비교적 큰 밴드갭으로 인해 자외선에 의해서만 활성화될 수 있다는 문제점을 지니고 있어, 광촉매 반응에서 궁극적으로 목표로 하는 가시광선용 광촉매로 활용하는데에 있어서는 한계점을 지니고 있다. 따라서 현재까지도 TiO2 광촉매의 활성을 그대로 유지하면서도 빛 흡수를 가시광선 영역으로 확장하기 위한 많은 연구가 진행되고 왔다[3]. | |
반도체 광촉매를 이용하는 오염처리 방법의 장점은 무엇인가? | 최근 급속한 산업발전에 따라 많은 환경문제가 발생하였고, 이에 따라 환경오염 문제를 해결하기 위한 다양한 연구가 진행되고 있다. 환경오염 문제 처리를 위한 여러 가지 방안중에서도 특히 반도체 광촉매를 이용하는 오염처리 방법은 궁극적으로는 재생가능한 에너지원인 태양광을 이용할 수 있고 또한 다양한 유기 및 무기 오염물을 분해처리할 수 있다는 점에서 학문적인 면에서 뿐만 아니라 실용적인 면에서 있어서도 큰 관심을 모으고 있다. |
Etacheri, V., Valentin, C. D., Schneider, J., Bahnemann, D., and Pillai, S. C., "Visible-Light Activation of $TiO_2$ Photocatalysts: Advances in Theory and Experiments," J. Photochem. Photobiol. C: Photochem. Rev., 25, 1-29 (2015).
Kumar, S. G., and Devi, L. G., "Review on Modified $TiO_2$ Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics," J. Phys. Chem. A, 115, 13211-13241 (2011).
Hernandez-Ramirez, A., and Medina-Ramirez, I., in: Hernandez-Ramirez, A., and Medina-Ramirez, I., Eds., Semiconducting Materials in Photocatalytic Semiconductors, Synthesis, Characterization, and Environmental Applications, Springer, Switzerland, pp. 1-40 (2015).
Yue, X., Yi, S., Wang, R., Zhang, Z., and Qiu, S., "Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution," Sci. Rep., 6, 22268 (2016).
Zhu, H., Jianga, R., Xiao, L., Chang, Y., Guan, Y., Li, X., and Zeng, G., "Photocatalytic Decolorization and Degradation of Congo Red on Innovative Crosslinked Chitosan/Nano-CdS Composite Catalyst under Visible Light Irradiation," J. Hazard. Mater., 169, 933-940 (2009).
Fan, Y., Deng, M., Chen, G., Zhang, Q., Luo, Y., Li, D., and Meng, Q., "Effect of Calcination on the Photocatalytic Performance of CdS under Visible Light Irradiation," J. Alloy. Compd., 509, 1477-1481 (2011).
Chen, F., Jia, D., Cao, Y., Jin, X., and Liu, A., "Facile Synthesis of CdS Nanorods with Enhanced Photocatalytic Activity," Ceram. Int., 41, 14604-14609 (2015).
Sehati, S., and Entezari, M. H., "Sono-intercalation of CdS Nanoparticles into the Layers of Titanate Facilitates the Sunlight Degradation of Congo Red," J. Colloid Interface Sci., 462, 130-139 (2016).
Li, Q., Meng, H., Zhou, P., Zheng, Y., Wang, J., Yu, J., and Gong, J., " $Cd_{0.5}Zn_{0.5}S$ Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic $H_2$ -Production Activity," ACS Catal., 3, 882-889 (2013).
Zhou, Y., Wang, Y., Wen, T., Zhang, S., Chang, B., and Guo, Y., "Mesoporous $Cd_{1-x}Zn_xS$ Microspheres with Tunable Bandgap and High Specific Surface Areas for Enhance Visible-Light-Driven Hydrogen Generation," J. Colloid Interface Sci., 467, 97-104 (2016).
Li, N., Zhou, B., Guo, P., Zhou, J., and Jing, D., "Fabrication of Noble-Metal-Free $Cd_{0.5}Zn_{0.5}S$ /NiS Hybrid Photocatalysts for Efficient Solar Hydrogen Evolution," Int. J. Hydrogen Energy, 38, 11268-11277 (2013).
Xiong, Z., Zheng, M., Zhu, C., Zhang, B., Ma, L., and Shen, W., "One-Step Synthesis of Highly Efficient Three-Dimensional $Cd_{1-x}Zn_xS$ Photocatalysts for Visible Light Photocatalytic Water Splitting," Nanoscale Res. Lett., 8, 334-339 (2013).
Huang, M., Yu, J., Deng, C., Huang, Y., Fan, M., Li, B., Tong, Z., Zhang, F., and Dong, L., "3D Nanospherical $Cd_xZn_{1-x}S$ /Reduced Graphene Oxide Composites with Superior Photocatalytic Activity and Photocorrosion Resistance," Appl. Surf. Sci., 365, 227-239 (2016).
Wang, X., Tian, H., Cui, X., Zheng, W., and Liu, Y., "One- Pot Hydrothermal Synthesis of Mesoporous $Zn_xCd_{1-x}S$ /Reduced Graphene Oxide Hybrid Material and Its Enhanced Photocatalytic Activity," Dalton Trans., 43, 12894-12903 (2014).
Narayanam, P. K., Soni, P., Srinivasa, R. S., Talwar, S. S., and Major, S. S., "Strong and Tunable Blue Luminescence from $Cd_{1-x}Zn_xS$ Alloy Nanocrystallites Grown in Langmuir-Blodgett Multilayers," J. Phys. Chem., C, 117, 4314-4325 (2013).
Min, Y., Fan, J., Xu, Q., and Zhang, S., "High Visible-Photoactivity of Spherical $Cd_{0.5}Zn_{0.5}S$ Coupled with Grahpene Composite for Decolorizing Organic Dyes," J. Alloy. Compd., 609, 46-53(2014).
Zhang, J., Xu, Q., Qiao, S. Z., and Yu, J., "Enhanced Visible-Light HydrogenProduction Activity of CopperModified $Zn_xCd_{1-x}S$ ," ChemSusChem, 6, 2009-2015 (2013).
McBride, R. A., Kelly, J. M., and McCormack, D. E., "Growth of Well-Defined ZnO Microparticles by Hydroxide Ion Hydrolysis of Zinc Salts," J. Mater. Chem., 13, 1196-1201 (2003).
Khan, Z. R., Zulfequar, M., and Khan, M. S., "Chemical Synthesis of CdS Nanoparticles and Their Optical and Dielectric Studies," J. Mater, Sci., 46, 5412-5416(2011).
Sepulveda-Guzman, S., Reeja-Jayan, B., de la Rosa, E. Torres-Castro, A. Gonzalez-Gonzalez, V., and Jose-Yacaman, M., "Synthesis of Assembled ZnO Structures by Precipitation Method in Aqueous Media," Mater. Chem. Phys., 11, 172-178 (2009).
Kozlova, E. A., Markovskaya, D. A., Cherepanova, S. V., Saraev, A. A., Gerasimov, E. Y., Perevalov, T. V., Kaichev, V. V., and Parmon, V. N., "Novel Photoctalysts Based on $Cd_{1-x}Zn_xS/Zn(OH)_2$ for the Hydrogen Evolution from Water Solution of Ethanol," Int. J. Hydrogen Energy, 39, 18758-18769 (2014).
Xie, S., Lu, X., Zhai, T., Gan, J., Li, W., Xu, M., Yu, M., Zhang, Y.-M., and Tong, Y., "Controllable Synthesis of $Zn_xCd_{1-x}S$ @ZnO Core-Shell Nanorods with Enhanced Photocatalytic Activity," Langmuir, 28, 10558-10564 (2012).
Wang, W., Zhu, W., and Xu, H., "Monodisperse, Mesoporous $Zn_xCd_{1-x}S$ Nanoparticles as Stable Visible-Light-Driven Photocatalysts," J. Phys. Chem. C, 112, 16754-16758 (2008).
Cui, W., Ma, S., Liu, L., Hu, J., Liang, Y., and McEvoy, J. G., "Photocatalytic Activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for Rhodamine B Degradation under Visible Light Irradiation," Appl. Surf. Sci., 271, 171-181 (2013).
Li, D., Wu, Z., Xing, C., Jiang, D., Chen, M., Shi, W., and Yuan, S., "Novel $Zn_{0.8}Cd_{0.2}S/g-C_SN4$ Heterojunctions with Superior Visible-Light Photocatalytic Activity: Hydrothermal Synthesis and Mechanism Study," J. Mol. Catal. A: Chem., 395, 261-268 (2014).
Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,' Adv. Mater., 13, 113-116 (2001).
Li, Y., Ye, M., Yang, C., Li, X., and Li, Y., "Composition- and Shape-Controlled Synthesis and Optical Properties of Alloyed Nanoparticles," Adv. Funct. Mater., 15, 433-441 (2005).
Kulkarni, S. K., Winkler, U., Deshmukh, N., Borse, P. H., Funk, R., and Umbach, E., "Investigations on Chemically Capped CdS, ZnS and ZnCdS Nanoparticles," Appl. Surf. Sci., 169-170, 438-446 (2001).
Xu, X., Lu, R., Zhao, X., Zhu, Y., Xu, S., and Zhang, F., "Novel Mesoporous $Zn_xCd_{1-x}S$ Nanoparticles as Highly Efficient Photocatalysts," Appl. Catal. B: Environ., 125, 11-20 (2012).
Shouli, B., Xin, L., Dianqing, L., Song, C., Ruixian, L., and Aifan, C., "Synthesis of ZnO Nanorods and Its Application in $NO_2$ Sensors," Sens. Actuators B, 153, 110-116(2011).
Liangyuan, C., Zhiyong, L., Shouli, B., Kewei, Z., Dianqing, L., Aifan, C., and Liu, C. C., "Synthesis of 1-Dimensional ZnO and Its Sensing Property for CO," Sens. Actuators B, 143, 620-628 (2010).
Li, W. J., Shi, E. W., Zhong, W. Z., and Yin, Z. W., "Growth Mechanism and Growth Habit of Oxide Crystals," J. Crystal Growth, 203, 186-196 (1999).
De la Rosa, E., Sepulveda-Guzman, S., Reeja-Jayan, B., Torres, A., Salas, P., Elizondo, M., and Jose-Yacaman, M., "Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods," J. Phys. Chem. C, 111, 8489-8495 (2007).
Wahab, R. Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., and Shin, H.-S., "Low Temperature Solution Synthesis and Characterization of ZnO Nano-Flowers," Mater. Res. Bull., 42, 1640-1648 (2007).
Zhang, J., Yu, J., Jaroniec, M., and Gong, J. R., "Noble Metal-Free Reduced Graphehe Oxide- $Zn_xCd_{1-x}S$ Nanocomposite with Enhanced Solar Photocatalytic $H_2$ -Production," Nano Lett., 12, 4584-4589 (2012).
Yu, K. Yang, S., He, H., Sun, C., Gu, C., and Ju, Y., "Visible Light-Driven Photocatalytic Degradation of Rhodamine B over $NaBiO_3$ : Pathways and Mechanism," J. Phys. Chem. A, 113, 10024-10032 (2009).
Wu, T., Liu, G., Zhao, J., Hidaka, H., and Serpone, N., "Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous $TiO_2$ Dispersions," J. Phys. Chem. B, 102, 5845-5851 (1998).
Kozlova, E. A., Cherepanova, S. V., Markovskaya, D. V., Saraev, A. A., Gerasimov, E. Y., and Parmon, V. N., "Novel Photocatalysts $Pt/Cd_{1-x}Zn_xS/ZnO/Zn(OH)_2$ : Activation during Hydrogen Evolution from Aqueous Solutions of Ethanol under Visible Light," Appl. Catal. B: Environ., 183, 197-205 (2016).
Lei, Z., You, W., Liu, M., Zhou, G., Takata, T., Hara, M., Domen, K., and Li, C., "Photocatalytic Water Reduction under Visible Light on a Novel $ZnIn_2S_4$ Catalyst Synthesized by Hydrothermal Method," Chem. Commun., 2142-2143 (2003).
Wei, S., Shifu, C., Sujuan, Z., Wei, Z., Huaye, Z., and Xiaoling, Y., "Preparation and Characterization of p-n Heterojunction Photocatalyst $p-CuBi_2O_4/n-TiO_2$ with High Photocatalytic Activity under Visible and UV Light Irradiation," J. Nanopart. Res., 12, 1355-1366 (2010).
Zong, X., Yan, H., Wu, G., Ma, G., Wen, F., Wang, L., and Li, C., "Enhancement of Photocatalytic $H_2$ Evolution on CdS by Loading $MoS_2$ as Cocatalyst under Visible Light Irradiation," J. Am. Chem. Soc., 130, 7176-7177 (2008).
Huang, H., Li, D., Lin, Q., Zhang, W., Shao, Y., Chen, Y., Sun, M., and Fu, X., "Efficient Degradation of Benzene over $LaVO_4/TiO_2$ Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation," Environ. Sci. Technol., 43, 4164-4168 (2009).
Chen, C., Zhao, W., Li, J., and Zhao, J., "Formation and Identification of Intermediates in Visible-Light-Assisted Photogegradation of Sulforhodamine-B Dye in Aqueous $TiO_2$ Dispersion," Environ. Sci. Technol., 36, 3604-3611 (2002).
Zhuang, J., Dai, W., Tian, Q., Li, Z., Xie, L., Wang, J., and Liu, P., "Photocatalytic Degradation of RhB over $TiO_2$ Bilayer Films: Effect of Defects and Their Location," Langmuir, 26, 9686-9694 (2010).
Cruz, A. M., and Perez, U. M. G., "Photocatalytic Properties of $BiVO_4$ Prepared by the Co-precipitation Method: Degradation of Rhodamine B and Possible Reaction Mechanisms under Visible Irradiation," Mater. Res. Bull., 45, 135-141 (2010).
Takirawa, T., Watanabe, T., and Honda, K., "Photocatalysis through Excitation of Adsorbates. 2. A Comparative Study of Rhodamine B and Methylene Blue on Cadmium Sulfide," J. Phys. Chem., 82, 1391-1396 (1978).
Li, X., and Ye, J., "Photocatalytic Degradation of Rhodamine B over $Pb_3Nb_4O_{13}$ /Fumed $SiO_2$ Composite under Visible Light Irradiation," J. Phys. Chem. C., 111, 13109-13116 (2007).
Merka, O., Yarovyi, V., Bahnemann, D.W., and Wark, M., "pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over $Pb_3Nb_4O_{13}$ ," J. Phys. Chem. C., 115, 8014-8023 (2011).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.