$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes

초록

본 연구는 2003년 1사분기부터 2016년 2사분기 까지 인천국제공항에서 미주노선을 통하여 미주 내 공항에 도착하는 항공화물의 시계열 자료를 통하여 SARIMA 모형을 활용하여 항공화물 수요예측을 시행하였다. 또한 SARIMA 모형을 활용하여 만들어진 수요예측 모형과 기존 연구에 주로 활용되어졌던 ARIMA 모형을 활용하여 만들어진 수요예측 모형과 비교분석함으로써, 주기적인 특성 및 계절성을 가진 시계열 자료에 대한 SARIMA 모형의 상대적으로 우수한 예측 정확성을 입증하였다. 기존의 항공 관련 연구는 주로 여객에 관한 연구가 상대적으로 많았다. 또한 화물과 관련된 연구에서도 특정노선이 아닌 공항이나 전체에 대한 연구가 대부분이었다. 이러한 상황에서, SARIMA 모형을 활용하여 미주지역이라는 특정 노선에 대한 항공화물의 수요를 예측한 본 연구는 큰 의의가 있다고 생각된다.

Abstract

For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일