$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

충격반향기법을 이용한 내화물 두께 추정
Estimation of the thickness of refractory ceramics using the impact-echo method 원문보기

한국음향학회지= The journal of the acoustical society of Korea, v.36 no.4, 2017년, pp.247 - 253  

이성민 (Kyungpook National University) ,  신남호 (POSCO Technical Research Laboratory) ,  노용래 (Kyungpook National University)

초록
AI-Helper 아이콘AI-Helper

일반적으로 내화물의 진동특성은 등방성 재료로 가정한 후 확인한다. 하지만 실제로 내화물은 특정 방향으로 가압 성형하여 제조되기 때문에 이방성 재료특성을 보인다. 따라서 본 연구에서는 내화물을 정방정계 대칭성으로 가정하고, 유한요소프로그램을 이용해 너비, 길이, 높이 방향에 대한 주파수 응답을 얻었다. 해석결과의 타당성은 실제 측정결과의 비교를 통해 검증하였다. 주파수 응답을 기반으로, 충격방향기법을 이용하여 내화벽돌의 세 방향의 두께를 추정하였다. 실험을 통해 찾은 두께와 실제 두께와의 최대 오차율은 5 % 미만으로 확인되었다. 이를 통해 내화물과 같은 이방성 재료 두께 측정 시 충격반향기법의 효용성을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Generally, the vibration characteristics of refractory ceramics are identified by assuming them as isotropic materials. However, in practice, refractory ceramics exhibit anisotropic properties as they are manufactured by pressing ceramic powders along a particular direction. Therefore, in this resea...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • After obtaining the anisotropic elastic stiffness matrix, a numerical modal analysis was conducted using the commercial FEA package PZFlex® to analyze the vibrational characteristics of the refractory brick, such as resonance frequencies and mode shapes.
  • However, in practice, refractory ceramics exhibit anisotropic properties as they are manufactured by pressing ceramic powder along a particular direction. In this research, the frequency responses of refractory ceramic bricks along the width, length, and height directions are acquired by considering tetragonal symmetry in the material properties of the refractory ceramics.
  • In this research, the vibration characteristics of the refractory brick were analyzed by considering the anisotropic properties of the material. The refractory brick was considered to have tetragonal structural symmetry.
  • The estimated thicknesses differed from the actual thicknesses by less than 5 %. This confirms the effectiveness of the impact-echo technique along with anisotropic property characterization to evaluate the thickness of the refractory brick. The procedure adopted in this study can be conveniently applied to the thickness estimation of other ceramic materials as well as isotropic materials.

대상 데이터

  • The instruments used in the experiment were an impact hammer (PCB Piezotronics 208A02), accelerometer (B&K 4367), and amplifier (Type 2692 by Bruel & Kjaer).
  • The sound velocities along the three directions were measured using the ultrasonic through-transmission technique. The instruments used were a pulser/receiver (Olympus Panametrics 5072PR), an oscilloscope (LeCroy LT322), and ultrasonic transducers (Olympus Panametrics NDT V103 and V153). The measurement was conducted by attaching a transmitting transducer and receiving transducer on the opposite planes of an aluminum plate that has dimensions of 300 mm (width) × 270 mm (length) × 20 mm (height), as shown in Fig.
  • The refractory brick characterized in this work is a standard carbon block (Nippon Electrode Company Ltd. Grade BC-5) whose density is 1,920 kg/m3. The impact-echo technique allows the measurement of the thickness of the brick based on the principle presented in Eq.

이론/모형

  • As stated in Eq. (1), it is necessary to know the sound velocity beforehand to estimate the thickness of a refractory brick using the impact-echo technique. Hence, the longitudinal and shear wave velocities of the refractory brick were measured.
  • and ultrasonic pulse-echo technique. In this work, the impact-echo technique is used to characterize the state of refractory ceramics in a blast furnace. The impact-echo technique was developed by Carino and Sansalone to inspect flaws in concrete or masonry.
  • The frequency response of a refractory brick that has the same dimensions as that used in the numerical analysis was measured experimentally using the impact-echo technique. The instruments used in the experiment were an impact hammer (PCB Piezotronics 208A02), accelerometer (B&K 4367), and amplifier (Type 2692 by Bruel & Kjaer).
  • The sound velocities along the three directions were measured using the ultrasonic through-transmission technique. The instruments used were a pulser/receiver (Olympus Panametrics 5072PR), an oscilloscope (LeCroy LT322), and ultrasonic transducers (Olympus Panametrics NDT V103 and V153).
  • [7] However, in case of refractory ceramics, no general acoustic properties are available, so it is necessary to determine the longitudinal wave velocities properties of a specific refractory sample of interest. Therefore, in this work, the longitudinal wave velocities of a refractory brick were measured along different crystal directions using the ultrasonic through-trans mission technique. The vibration characteristics of refractory bricks were then examined by using FEA (Finite Element Analysis).
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. A. N. Dmitriev, Y. A. Chesnkov, K. Chen, and O. Y. Ivanov, "Monitoring the wear of the refractory lining in the blast furnace hearth," Steel in Translation 43, 8-14 (2013). 

  2. S. N. Silva, F. Vernilli, S. M. Justus, O. R. Marques, A. Mazine, J. B. Baldo, E. Longo, and J. A. Varela, "Wear mechanism for blast furnace hearth refractory lining," Ironmaking & Steelmaking 32, 459-467 (2005). 

  3. D. M. McCann and M. C. Forde, "Review of NDT methods in the assessment of concrete and masonry structures," NDT E Int. 34, 71-84 (2001). 

  4. C. Y. Wang, C. L. Chiu, K. Y. Tsai, P. K. Chen, P. C. Peng, and H. L. Wang, "Inspecting the current thickness of a refractory wall inside an operational blast furnace using the impact echo method," NDT E Int. 66, 43-51 (2014). 

  5. J. Sebastian, "Monitoring of refractory wall recession using high-temperature Impact-echo instrumentation," University of Dayton, Tech. Rep., 2004. 

  6. W. L. Ying, R. MacRosty, P. Gebski, R. Pula, A. Sadri, and T. Gerritsen, "Managing furnace integrity by utilizing non-destructive testing (NDT) and monitoring techniques," Conference of Metallurgists, paper no. 8709 (2015). 

  7. M. Sansalone and W. B. Streett, Impact-Echo: Nondestructive Evaluation of Concrete and Masonry (Bullbrier Press, New York, 1997), pp. 256-257. 

  8. F. Schubert, H. Wiggenhauser, and R. Lausch, "On the accuracy of thickness measurements in impact-echo testing of finite concrete specimens-numerical and experimental results," Ultrasonics 42, 897-901 (2004). 

  9. M. T. Ghomi, J. Mahmoudi, and M. Darabi, "Concrete plate thickness measurement using the indirect impactecho method," NDT E Int. 28, 119-144 (2013). 

  10. J. S. Popovics, G. P. Centrangolo, and N. D. Jackson, "Experimental investigation of impact-echo method for concrete slab thickness measurement," J. Korean Soc. Nondestruct. Test. 26, 427-439 (2006). 

  11. M. T. A. Chaudhary, "Effectiveness of impact echo testing in detecting flaws in prestressed concrete slabs," Construction and Building Materials 47, 753-759 (2013). 

  12. H. Azari, S. Nazarian, and D. Yuan, "Assessing sensitivity of impact echo and ultrasonic surface waves methods for nondestructive evaluation of concrete structures," Construction and Building Materials 71, 384-391 (2014). 

  13. D. S. Kim, W. S. Seo, and K. M. Lee, "IE-SASW method for nondestructive evaluation of concrete structure," NDT E Int. 39, 143-154 (2006). 

  14. Y. S. Cho, S. U. Hong, and M. S. Lee, "The assessment of the compressive strength and thickness of concrete structures using nondestructive testing and an artificial neural network," NDT E Int. 24, 277-288 (2009). 

  15. D. G. Aggelis, T. Shiotani, and K. Kasai, "Evaluation of grouting in tunnel lining using impact-echo," Tunnelling and Underground Space Technology 23, 629-637 (2008). 

  16. J. S. Popovics, N. Ryden, A. Gibson, S. Alzate, I. L. Al-Qadi, and W. Xie, "New developments in NDE methods for pavements" AIP Conf. Proc. 1320-1327 (2008). 

  17. K. R. Maser, T. J. Holland, R. Roberts, and J. Popovics, "NDE methods for quality assurance of new pavement thickness," Int. J. Pavement Eng. 7, 1-10 (2006). 

  18. D. A. Sack and L. D. Olson, "Advanced NDT methods for evaluating concrete bridges and other structures," NDT E Int. 28, 349-357 (1995). 

  19. S. K. U. Rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, "Nondestructive test methods for concrete bridges: A review," Construction and Building Materials 107, 58-86 (2016). 

  20. A. N. Pyrikove, A. V. Likhodievskii, V. N. Loginov, A. E. Paren'kov, and O. V. Golubev, "Prospects for refractory blast-furnace linings," Steel in Translation 38, 132-140 (2008). 

  21. S. A. Podkopaev, "Carbon-based refractories for the lining of blast furnaces," Refractories and Industrial Ceramics 45, 235-238 (2004). 

  22. M. Sansalone, "Impact-echo: the complete story", ACI Struct. J. 94, 777-786 (1997). 

  23. N. J. Carino, "Impact-echo method: An overview," Proc. Structure Congress & Exposition, 118 (2001). 

  24. M. T. Hu, Y. Lin, and C. C. Cheng, "Method for determining internal p-wave speed and thickness of concrete plates," ACI Materials J. 103, 327-335 (2006). 

  25. C. Hsiao, C. C. Cheng, T. Liou, and Y. Juang, "Detecting flaws in concrete blocks using the impact-echo method," NDT E Int. 41, 98-107 (2008). 

  26. J. F. Nye, Physical Properties of Crystals (Oxford University Press, New York, 1986), pp. 250-251. 

  27. V. M. Ristic, Principles of Acoustic Devices (Willey, New York, 1983), pp. 185-190. 

  28. D. Zhang and Y. Sun, "Dynamics characteristics of blast furnace shell," Advanced Engineering Forum 2, 1018-1020 (2011). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로