$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Investigation of the Thermal Performance of a Vertical Two-Phase Closed Thermosyphon as a Passive Cooling System for a Nuclear Reactor Spent Fuel Storage Pool 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.49 no.3, 2017년, pp.476 - 483  

Kusuma, Mukhsinun Hadi (Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia) ,  Putra, Nandy (Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia) ,  Antariksawan, Anhar Riza (Centre for Nuclear Reactor Safety and Technology, National Nuclear Energy Agency of Indonesia (BATAN)) ,  Susyadi, Susyadi (Centre for Nuclear Reactor Safety and Technology, National Nuclear Energy Agency of Indonesia (BATAN)) ,  Imawan, Ficky Augusta (Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia)

Abstract AI-Helper 아이콘AI-Helper

The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototyp...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • From previous studies, it is known that a vertical TPCT for passive cooling of a nuclear SFSP has not yet been studied or used. The objective of this study was to investigate the thermal performance of a prototype model of a large-scale vertical TPCT designed as a passive cooling system for a nuclear research reactor SFSP. This research used experimental investigations and RELAP5/MOD 3.
본문요약 정보가 도움이 되었나요?

참고문헌 (24)

  1. C. Ye, M.G. Zheng, M.L. Wang, R.H. Zhang, Z.Q. Xiong, The design and simulation of a new spent fuel pool passive cooling system, Ann. Nucl. Energy 58 (2013) 124-131. 

  2. B.S. Jackel, Status of the spent fuel in the reactor buildings of Fukushima Daiichi 1-4, Nucl. Eng. Des. 283 (2015) 2-7. 

  3. V. Оgnerubov, А. Кaliatka, V. Vileiniskis, Features of modelling of processes in spent fuel pools using various system codes, Ann. Nucl. Energy 72 (2014) 497-506. 

  4. X. Wu, W. Li, Y. Zhang, W. Tian, G. Su, S. Qiu, Analysis of the loss of pool cooling accident in a PWR spent fuel pool with MAAP5, Ann. Nucl. Energy 72 (2014) 198-213. 

  5. V.L. Sailor, K.R. Perkins, J.R. Weeks, H.R. Connell, Severe accidents in spent fuel pools in support of generic safety, Issue 82, Brookhaven National Lab., Upton, NY (USA), Nuclear Regulatory Commission, Washington, DC (USA). Division of Reactor and Plant Systems, 1987. 

  6. E.D. Throm, Beyond design basis accidents in spent-fuel pools-generic Issue 82, Nucl. Eng. Des. 126 (1991) 333-359. 

  7. D. Reay, R. McGlen, P. Kew, Heat Pipes: Theory, Design and Applications, Butterworth-Heinemann, Oxford, UK, 2013. 

  8. C. Byon, S.J. Kim, Capillary performance of bi-porous sintered metal wicks, Int. J. Heat Mass Transf. 55 (2012) 4096-4103. 

  9. N. Putra, W.N. Septiadi, R. Saleh, R.A. Koestoer, S. Purbo Prakoso, The effect of CuO-water nanofluid and biomaterial wick on loop heat pipe performance, Adv. Mater. Res. 875 (2014) 356-361. 

  10. Y. Li, H. He, Z. Zeng, Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick, Appl. Therm. Eng. 50 (2013) 342-351. 

  11. N. Putra, W.N. Septiadi, H. Rahman, R. Irwansyah, Thermal performance of screen mesh wick heat pipes with nanofluids, Exp. Therm. Fluid Sci. 40 (2012) 10-17. 

  12. N. Putra, W.N. Septiadi, R. Irwansyah, Effect of concentration and loading fluid of nanofluids on the thermal resistance of sintered powder wick heat pipe, Adv. Mater. Res. 651 (2013) 728-735. 

  13. N. Putra, R. Saleh, W.N. Septiadi, A. Okta, Z. Hamid, Thermal performance of biomaterial wick loop heat pipes with waterbased Al2O3 nanofluids, Int. J. Therm. Sci. 76 (2014) 128-136. 

  14. S.H. Noie, Heat transfer characteristics of a two-phase closed thermosyphon, Appl. Therm. Eng. 25 (2005) 495-506. 

  15. A. Alizadehdakhel, M. Rahimi, A.A. Alsairafi, CFD modeling of flow and heat transfer in a thermosyphon, Int. Commun. Heat Mass Transf. 37 (2010) 312-318. 

  16. S.H. Noie, S.Z. Heris, M. Kahani, S.M. Nowee, Heat transfer enhancement using $Al_2O_3$ /water nanofluid in a two-phase closed thermosyphon, Int. J. Heat Fluid Flow 30 (2009) 700-705. 

  17. P.G. Anjakar, D.R.B. Yarasu, Experimental analysis of condenser length effect on the performance of thermosyphon, Int. J. Emerg. Technol. Adv. Eng. 2 (2012) 494-499. 

  18. K. Kafeel, A. Turan, Axi-symmetric simulation of a two phase vertical thermosyphon using Eulerian two-fluid methodology, Heat Mass Transf. 49 (2013) 1089-1099. 

  19. Y.-H. Tung, R.W. Johnson, Y.-M. Ferng, C.-C. Chieng, Modeling strategies to compute natural circulation using CFD in a VHTR after a LOFA, Nucl. Eng. Des. 275 (2014) 80-90. 

  20. W. Fu, X. Li, X. Wu, Z. Zhang, Investigation of a long term passive cooling system using two-phase thermosyphon loops for the nuclear reactor spent fuel pool, Ann. Nucl. Energy 85 (2015) 346-356. 

  21. M.H. Kusuma, N. Putra, S. Widodo, A.R. Antariksawan, Simulation of heat flux effect in straight heat pipe as passive residual heat removal system in light water reactor using RELAP5 Mod 3.2, Appl. Mech. Mater. 819 (2016) 122-126. 

  22. Z. Xiong, M. Wang, H. Gu, C. Ye, Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool, Ann. Nucl. Energy 83 (2015) 258-263. 

  23. T.L. Bergman, F.P. Incropera, A.S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, New Jersey, USA, 2011. 

  24. D. Wang, Z. Liu, J. Shen, C. Jiang, B. Chen, J. Yang, Z. Tu, W. Liu, Experimental study of the loop heat pipe with a flat disk-shaped evaporator, Exp. Therm. Fluid Sci. 57 (2014) 157-164. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로