$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

담수 퇴적물의 영양염 용출 측정 방법에 관한 고찰
A Study on the Measurement Method for Benthic Nutrient Flux in Freshwater Sediments 원문보기

대한환경공학회지 = Journal of Korean Society of Environmental Engineers, v.39 no.5, 2017년, pp.288 - 302  

김경희 (국립환경과학원 물환경연구부) ,  김성한 (한양대학교 해양융합공학과) ,  진달래 (국립환경과학원 물환경연구부) ,  허인애 (국립환경과학원 물환경연구부) ,  현정호 (한양대학교 해양융합공학과)

초록
AI-Helper 아이콘AI-Helper

퇴적물이 수층의 영양염 분포에 미치는 영향을 평가하기 위해서 퇴적물의 용출률을 정확하게 측정할 필요가 있다. 이에 본 연구에서 퇴적물 용출률 측정 방법 중 퇴적물 코어 배양법을 대상으로 용출률의 측정 조건과 실험 절차를 제시하였다. 낙동강 수계 중류에서 2015년 7월에 표층이 교란되지 않은 퇴적물 코어 시료를 채취하여, pre-incubation 시간(6, 12, 24시간), 초기 산소농도(포화도 90, 70 50%), 확산경계층의 두께(0, 0.6-0.8, 1.2-1.4 mm), 배양 온도(10, 17, 20, $25^{\circ}C$) 등을 여러 가지 조건으로 조성하여 측정한 영양염 용출률의 결과를 그 바탕으로 하였다. 네 가지 주요 환경 조건이 달라지면, 안정화 시간 동안 유기물 분해 및 산화 과정에 의한 화학 조성 변화, 퇴적층의 산화-환원 환경 변화에 따른 흡착 및 탈착, 퇴적물-수층 경계면에서의 수리역학적 상황 변동에 의한 물질 교환 증감, 퇴적물 내 미생물의 활성 증가 등을 야기하여 퇴적물의 영양염용출률에 영향을 미친다. 따라서, 퇴적물 코어 배양법으로 실제 현장값과 유사한 결과를 생산하기 위해서는 현장 심수층의 수온 및 용존산소 농도, 유속을 자연 상태와 가깝게 재현하고 퇴적물 시료 채집 후 되도록 빠른 시간 안에 배양 실험을 수행해야 한다. 두 개의 반복구에 대하여 퇴적물 코어 배양법으로 영양염 용출률을 측정하였을 때 대부분의 실험 조건에서 상대백분율차가 20% 이하였다. 측정 조건과 절차를 엄밀히 준수하여 실험하였을 때 정밀도를 확보할 수 있는 것으로 사료되며, 향후 측정 결과의 정확도를 확인하기 위하여 현장 측정법과 비교할 예정이다.

Abstract AI-Helper 아이콘AI-Helper

Accurate measurement of benthic nutrient fluxes (BNF) is a prerequisite for evaluating the effect of sediments on nutrient cycle in the surface water. The intact sediment cores were collected in July 2015 at the midstream of Nakdong River. We identified pre-incubation time (6, 12, 24 hr), dissolved ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
퇴적물로 유입되는 유기물의 종류는? 퇴적물로 유입되는 유기물은 대기나 육상 기원의 타지성 유기물(allochthonous organic matter)과 광합성 및 화학합성에 의해 수역 내에서 생산되는 자생성 유기물(autochthonous organic matter)로 구성된다. 외부에서 유입되거나 수층에서 생성된 유기물은 침강 입자와 결합하여 침강하며, 이때 유기물이 분해되기 시작한다.
온도 증가에 따른 유기물 분해 증가의 이유는? 우선 온도 증가에 따른 유기물 분해 증가를 그 예로 들 수 있다. 유기물 분해는 다양한 미생물 군집과 관련되어 있기 때문이다(Table 1). 유기물이 더 많이 분해될수록 그 분해 산물인 영양염이 더 많이 생성되므로, NH4 + - N와 PO4 3- - P의 용출률이 증가할 것을 예상할 수 있다.
하천 호소 퇴적물이란? 하천과 호소의 퇴적물은 담수 생태계를 구성하는 기본 요소 중 하나로서, 수층과 유기적으로 연결되어 있으며 그 경계면에서 끊임없이 상호작용이 일어난다. 수역 주변의 다양 한 자연적 인위적 공급원으로부터 유입되는 영양염(nutrients) 과 유기물(organic materials), 미량금속(trace metals) 등은 탄소 동화, 흡착 등을 통해 침강 입자와 결합하여 퇴적물에 축적되었다가, 환경 조건이 변하면 다시 수층으로 용출될 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (95)

  1. D'Angelo, E. M. and Reddy, K. R., "Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and water column," J. Environ. Qual., 23(5), 928-936(1994). 

  2. Nowlin, W. H., Evarts, J. L. and Vanni, M. J., "Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir," Freshwater Biol., 50, 301-322(2005). 

  3. Sondergaard, M., Jensen, J. P. and Jeppesen, E., "Role of sediment and internal loading of phosphorus in shallow lakes," Hydrobiol., 506-509, 135-145(2003). 

  4. Eadie, B. J., Chambers, R. L., Gardner, W. S. and Bell, G. L., "Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the southern basin," J. Great Lakes Res., 10, 307-321(1984). 

  5. Martin, J. H., Knauer, G. A, Karl, D. M. and Broenkow, W. W., "VERTEX: carbon cycling in the northeast Pacific," Deep Sea Res., 34(2), 267-285(1987). 

  6. Percuoco, V. P., Kalnejais, L. H. and Officer, L. V., "Nutrient release from the sediments of the Great Bay Estuary, N.H. USA," Estuarine, Coastal and Shelf Sci., 161, 76-87(2015). 

  7. Glud, R. N., "Oxygen dynamics of marine sediments," Mar. Biol. Res., 4, 243-289(2008). 

  8. Kristensen, E. and Holmer, M., "Decomposition of plant materials in marine sediment exposed to different electron acceptors ( $O_2,\;NO_3^^-,\;and\;SO_4^^{2-}$ ), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation," Geochim. et Cosmochim. Acta, 65(3), 419-433(2001). 

  9. Fenchel, T., King, G. M. and Blackburn, T. H., Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 3rd ed, Academic Press, San Diego, p. 303(2012). 

  10. Laanbroek, H. J., "Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review," Aquat. Botany, 38, 109-125(1990). 

  11. Emerson, S. and Hedges, J., "Sediment diagenesis and benthic flux," The Oceans and Marine Geochemistry Vol. 6 Treatise on Geochemistry, Elderfield, H., Turekian, K. K. and Holland, H.D. (Eds.), Elsevier-Pergamon, Oxford, pp. 293-319(2003). 

  12. Tromp, T. K., Van Cappellen, P. and Key, R. A., "A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments," Geochim. et Cosmochim. Acta, 59, 1259-1284(1995). 

  13. Marsden, M. W., "Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorous release," Freshwater Biol., 21, 139-162(1989) 

  14. Sondergaard, M., Jensen, J. P. and Jeppesen, E., "Internal phosphorus loading in shallow Danish Lakes," Hydrobiol., 408/409, 145-153(1999). 

  15. Fisher, M. M., Reddy, K. R. and Thomas James, R., "Internal nutrient loads from sediments in a shallow, subtropical lake," Lake and Reservoir Manage., 21(3), 338-349(2005). 

  16. Mu, D., Yuan, D., Feng, H., Xing, F., Teo, F. Y. and Li, S., "Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China," Mar. Pollut. Bullet., 114, 705-714(2017). 

  17. Malecki, L. M., White, J. R. and Reddy, K. R., "Nitrogen and phosphorous flux rates from sediment in the lower St. Johns River estuary," J. Environ. Qual., 33(4), 1545-1555(2004). 

  18. Reddy, K. R., Newman, S., Osborne, T. Z., White, J. R. and Fitz, H. C., "Phosphorous cycling in the greater everglades ecosystem: legacy phosphorous implications for management and restoration," Crit. Rev. Environ. Sci. Technol., 41, 148-186(2011). 

  19. Berelson, W. M., Heggie, D., Longmore, A., Kilgore, T., Nicholson, G. and Skyring, G., "Benthic nutrient recycling in Port Phillip Bay, Australia," Estuarine, Coastal and Shelf Sci., 46, 917-934(1998). 

  20. Burger, D. F., Hamilton, D. P., Pilditch, C. A. and Gibbs, M. M., "Benthic nutrient fluxes in a eutrophic, polymictic lake," Hydrobiol., 584, 13-25(2007). 

  21. Jeong, H.-Y. and Jo, K.-J., "SOD and inorganic nutrient fluxes from sediment in the downstream of the Nakdong River," Korean J. Limnol., 36(3), 322-335(2003). 

  22. Teague, K. G., Madden, C. and Day, J. W., "Sediment-water oxygen and nutrient fluxes in a river-dominated estuary," Estuaries, 11, 1-9(1988). 

  23. Ogilvie, B., Nedwell, D. B., Harrison, R. M., Robinson, A. and Sage, A., "High nitrate, muddy estuaries as nitrogen sinks: The nitrogen budget of the River Colne estuary (United Kingdom)," Mar. Ecol. Prog. Series, 150, 217-228(1997). 

  24. United Nations Environment Programme and the World Health Organization (UNEP/WHO), Water Quality Monitoring - A practical guide to the design and implementation of freshwater quality studies and monitoring programmes, Bartram, J. and Ballance, R. (Eds), CRC Press, New York, p. 396(1996). 

  25. Southwell, M. W., Mead, R. N., Luquire, C. M., Barbera, A., Avery, G. B., Kieber, R. J. and Skrabal, S. A., "Influence of organic matter source and diagenetic state on photochemical release of dissolved organic matter and nutrients from resuspendable estuarine sediments," Marine Chem., 126, 114-119(2011). 

  26. Berner, R. A., Early Diagenesis: a Theoretical Approach, Princeton University Press, Princeton, p. 256(1980). 

  27. Aller, R. C., Blair, N. E., Xia, Q. and Rude, P. D., "Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments," Continental Shelf Res., 16(5/6), 753-789(1996). 

  28. Hopkinson, C. S. and Wetzel, R. L., "In situ measurements of nutrient and oxygen fluxes in a coastal marine benthic community," Mar. Ecol. Prog. Series, 10, 29-35(1982). 

  29. Tengberg, A., de Bovee, F., Hall, P., Berelson, W., Chadwick, B., Ciceri, G., Crassous, P., Devol, A., Emerson, S., Gage, J., Glud, R., Graziottin, F., Gundersen, J., Hammond, D., Helder, W., Hinga, K., Holby, O., Jahnke, R., Khripounoff, A., Lieberman, H., Nuppenau, V., Pfannkuche, O., Reimers, C., Rowe, G., Sahami, A., Sayles, F., Schurter, M., Smallman, D., Wehrli, B. and de Wilde, P., "Benthic chamber and profiling landers in oceanography - A review of design, technical solutions and functioning," Prog. Oceanogr., 35, 253-294(1995). 

  30. Muller, B., Buis, K., Stierli, R. and Wehrli, B., "High spatial resolution measurements in lake sediments with PVC based liquid membrane ion-selective electrodes," Limnol. and Oceanogr., 43, 1728-1733(1998). 

  31. De Beer, D., Schramm, A., Santegoeds, C. M. and Kuhl, M., "A nitrite microsensor for profiling environmental biofilms," Appl. Environ. Microbiol., 63(3), 973-977(1997). 

  32. Huber, C., Klimant, I., Krause, C., Werner, T. and Wolfbeis, O. S., "Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye," Anal. Chim. Acta, 73, 2097-2103(2001). 

  33. Mortimer, R. J. G, Krom, M. D. Hall, P. O. J., Hulth, S. and Stahl, H., "Use of gel probes for the determination of high resolution solute distributions in marine and estuarine pore waters," Mar. Chem., 63(1-2), 119-129(1998). 

  34. Jarvie, H. P., Mortimer, R. J. G., Palmer-Felgate, E. J., Quinton, K. S., Harman, S. A. and Carbo, P., "Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediment using DET gel probes," J. Hydrol., 350(3), 261-273(2008). 

  35. Kuwae, T., Hosokawa, Y. and Eguchi, N., "Dissolved inorganic nitrogen cycling in Banzu intertidal sand-flat, Japan," Mangroves and Salt Marshes, 2, 167-175(1998). 

  36. Qu, W., Morrison, R. J., West, R. J. and Su, C., "Diagenetic Stoichiometry and Benthic Nutrient Fluxes at the Sediment. Water Interface of Lake Illawarra, Australia," Hydrobiol., 537, 249-264(2005). 

  37. Viollier, E., Rabouille, C., Apitz, S. E., Breuer, E., Chaillou, G., Dedieu, K., Furukawa, Y., Grenz, C., Hall, P., Janssen, F., Morford, J. L., Poggiale, J.-C., Roberts, S., Shimmield, T., Taillefert, M., Tengberg, A., Wenzhofer, F. and Witte, U., "Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey," J. Experimental Mar. Biol. and Ecol., 285-286, 5-31(2003). 

  38. Truax, D. D., Shindala, A. and Sartain, H., "Comparison of two sediment oxygen demand measurement techniques," J. Environ. Eng., 121(9), 619-624(1995). 

  39. Hall, P. O. J., Anderson, L. G., van der Loeff, M. M. R., Sundby, B. and Westerlund, S. F. G., "Oxygen uptake kinetics in the benthic boundary layer," Limnol. and Oceanogr., 34(4), 734-746(1989). 

  40. Chau, K. W., "Field measurements of SOD and sediment nutrient fluxes in a land-locked embayment in Hong Kong," Adv. Environ. Res., 6, 135-142(2002). 

  41. Sundback, K., Linares, F., Larson, F. and Wulff, A., "Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: The role of denitrification and microphytobenthos," Limnol. and Oceanogr., 49(4), 1095-1107(2004). 

  42. Glud, R. N., Forster, S. and Huettel, M., "Influence of radial pressure gradients on solute exchange in stirred benthic chambers," Mar. Ecol. Prog. Series, 141, 303-311(1996). 

  43. Ferron, S., Alonso-Perez, F., Castro, C. G., Ortega, T., Perez, F. F., Rios, A. F., Gomez-Parra, A. and Forja, J. M., "Hydrodynamic characterization and performance of an autonomous benthic chamber for use in coastal systems," Limnol. and Oceanogr.: Methods, 6, 558-571(2008). 

  44. Tengberg, A., Stahl, H., Gust, G., Muller, V., Arning, U., Andersson, H. and Hall, P. O. J., "Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics," Prog. Oceanogr., 60, 1-28(2004). 

  45. Tengberg, A., Hall, P. O. J., Andersson, U., Linden, B., Styrenius, O., Boland, G., de Bovee, F., Carlsson, B., Ceradini, S., Devol, A., Duineveld, G., Friemann, J.-U., Glud, R. N., Khripounoff, A., Leather, J., Linke, P., Lund-Hansen, L., Rowe, G., Santschi, P., de Wildeg, P. and Witten, U., "Intercalibration of benthic flux chambers II. Hydrodynamic characterization and flux comparisons of 14 different designs," Mar. Chem., 94, 147-173(2005). 

  46. Aller, R. C., "Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation," Chem. Geol., 114(3-4), 331-345(1994). 

  47. Koo, B. J., Kwon, K. K., and Hyun, J.-H.. "Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat," J. Sea Res., 58(4), 302-312(2007). 

  48. Hammond, D. E., Cummins, K. M., McManus, J., Berelson, W. M., Smith, G. and Spagnoli, F., "Methods for measuring benthic nutrient flux on the California Margin: comparing shipboard core incubation to in situ lander results," Limnol. and Oceanogr.: Methods, 2, 146-159(2004). 

  49. Bartoli, M., Nizzoli, D. and Viaroli, P., "Microphytobenthos activity and fluxes at the sediment-water interface: interactions and spatial variability," Aquat. Ecol., 37, 341-349(2003). 

  50. Santschi, P., Hohener, P., Benoit, G. and Buchholtz-ten Brink, M., "Chemical processes at the sediment-water interface," Mar. Chem., 30, 269-315(1990). 

  51. Nicholson, G. J., Longmore, A. R. and Berelson, W. M., "Nutrient fluxes measured by two types of benthic chamber," Mar. and Freshwater Res., 50(6), 567-572(1999). 

  52. Forja, J. M. and Gomez-Parra, A., "Measuring nutrient fluxes across the sediment-water interface using benthic chambers," Mar. Ecol. Prog. Series, 164, 95-105(1998). 

  53. Miller-Way, T., Boland, G. S., Rowe, G. T. and Twilley, R. R.. "Sediment oxygen consumption and benthic nutrient fluxes on the Louisiana continental shelf: a methodological comparison," Estuaries, 17, 809-815(1994). 

  54. Muller, B., Marki, M., Dinkel, C., Stierli, R. and Wehrli, B., "In situ measurements in lake sediments using ion-selective electrodes with a profiling lander system," Environmental Electrochemistry - Analyses of Trace Element Biogeochemistry, Taillerfert M. and Rozan, T. F. (Eds), Americal Chemical Society, Washington DC, pp. 126-143(2002). 

  55. Stahl, H., Tengberg, A., Brunnegard, J., Bjornbom, E., Forbes, T. L., Josefson, A. B., Kaberi, H. G., Karle Hassellov, I. M., Olsgard, F., Roos, P. and Hall, P. O. J., "Factors influencing organic carbon recycling and burial in Sakgerrak sediments," J. Mar. Res., 62, 867-907(2004). 

  56. Chau, K. W., "Field measurements of SOD and sediment nutrient fluxes in a land-locked embayment in Hong Kong," Adv. Environ. Res., 6, 135-142(2002). 

  57. Utley, B. C., Vellidis, G., Lowrance, R. and Smith, M. C., "Factors affecting sediment oxygen demand dynamics in blackwater streams of Georgia's coastal plain," J. Am. Water Resour. Assoc., 44(3), 742-753(2008). 

  58. Shim, J. H., Kang, Y.-C. and Choi, J.-W., "Chemical fluxes at the sediment-water interface below marine fish cages on the coastal waters off Tong-Young, south coast of Korea," The Sea, J. Korean Soc. Oceanogr., 2(2), 151-159(1997). 

  59. Lee, J. S., Bahk, K.-S., Khang, B.-J., Kim, Y.-T., Bae, J. H., Kim, S.-S., Park, J. J. and Choi, O.-I., "The Development of a benthic chamber (BelcI) for benthic boundary layer studies" The Sea, J. Korean Soc. Oceanogr., 15(1), 41-50(2010). 

  60. Kang, Y.-C. and Shim, J. H., "A device for the in situ measurement of benthic chemical fluxes in a shallow coastal environment: A benthic flux chamber for diver operation," Ocean Res., 19(1), 63-70(1997). 

  61. Lee, J. S., An, S.-U., Park, Y.-G., Kim, E., Kim, D., Kwon, J. N., Kang, D.-J. and Noh, J.-H., "Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea," Ocean Sci. J., 50(3), 581-588(2015). 

  62. Nurnberg, G. K., "A comparison of internal phosphorus loads in lakes with anoxic hypolimnia: Laboratory incubation verses in situ hypolimnetic phosphorus accumulation," Limnol. and Oceanogr., 32, 1160-1164(1987). 

  63. Jensen, H. S., Kristensen, P., Jeppesen, E. and Skytthe, A., "Iron:phsphorus ratio in surface sediment as indicator of phosphate release from aerobic sediments in shallow lakes," Hydrobiol., 235/236, 731-743(1992). 

  64. Krivtsov, V., Sigee, D. C., Bellinger, E. G. and Porteous, G., "Determination of P release from Rostherne Mere sediment cores," Acta Hydrochim. et Hydrobiol., 29, 111-117(2001). 

  65. Jahnke, R. A. and Jahnke, D. B., "Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter," Deep-Sea Res. I, 47, 1405-1428(2000). 

  66. Rowe, G. T., Boland, G. S., Escobar Briones, E. G., Cruz-Kaegi, M. E., Newton, A., Piepenberg, D., Walsh, I. and Deming, J., "Sediment community biomass and respiration in the Northeast Water Plynay, Greenland: a numerical simulation of benthic lander and spade core data," J. Mar. Syst., 10, 497-515(1997). 

  67. Belley, R., Snelgrove, P. V. R., Archambault, P. and Juniper, S. K., "Environmental drivers of benthic flux variation and ecosystem functioning in Salish Sea and northeast Pacific sediments," PLoS ONE, 11(3), e0151110, doi:10.1371/journal.pone.0151110(2016). 

  68. Sundback, K., Miles, A., Hulth, S., Pihl, L., Engstrom, P., Selander, E. and Svenson, A., "Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays," Mar. Ecol. Prog. Series, 246, 115-126(2003). 

  69. Alonso-Perez, F. and Castro, C. G., "Benthic oxygen and nutrient fluxes in a coastal upwelling system (Ria de Vigo, NW Iberian Peninsula): seasonal trends and regulating factors," Mar. Ecol. Prog. Series, 511, 17-32(2014). 

  70. Cowan, J. L. W., Pennock, J. R. and Boynton, W. R., "Seasonal and interannual patterns of sediment-water nutrient and oxygen flux in Mobile Bay, Alabama (USA): Regulating factors and ecological significance," Mar. Ecol. Prog. Series, 141, 229-245(1996). 

  71. Esten, M. E. and Wagner, K. J., "Investigation of benthic phosphorus flux controls in Lake Waco, Texas," Lake and Reservoir Manage., 26, 114-122(2010). 

  72. Vidal, L., Labeyrie, L., Cortijo, E., Arnold, M., Duplessy, J. C., Michel, E., Becque, S. and van Weering, T. C. E., "Evidence for changes in the North Atlantic Deep Water linked to meltwater surge during the Heinrich events," Earth Planetary Sci. Lett., 146, 13-27(1997). 

  73. Ziadat, A. H. and Berdanier, B. W., "Stream depth significance during in situ sediment oxygen demand measurements in shallow streams," J. Am. Water Resour. Assoc., 40(3), 631-638(2004). 

  74. Holland, D., Cook, P., Beardall, J. and Longmore, A., "Gippsland Lakes 'snapshot' - Nutrient Cycling and phytoplankton population dynamics," A report prepared for the Gippsland Lakes and Catchment Task Force (http://gcb.vic.gov.au/gippsland-lakes/), Gippsland Coastal Board, p. 22(2009). 

  75. Longhi, D., Bartoli, M., Nizzoli, D. and Viaroli, P., "Benthic processes in fresh water fluffy sediments undergoing resuspension," J. Limnol., 72(1), 1-12(2013). 

  76. Barcelona, M. J. and Wang. W., Usefulness of sediment oxygen demand as a tool for impoundment management, Research Report No. 169, Water Resource Center, University of Illinois(1982). 

  77. Glud, R. N., Berg, P., Fossing, H. and Jorgensen, B. B., "Effect of the diffusive boundary layer on benthic mineralization and $O_2$ distribution: A theoretical model analysis," Limnol. and Oceanogr., 52(2), 547-557(2007). 

  78. Jorgensen, B. B. and Des Marais, D. J., "The diffusive boundary layer of sediment: Oxygen microgradients over a microbial mat," Limnol. and Oceanogr., 35(6), 1343-1355(1990). 

  79. Kristensen, E., "Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals," Hydrobiol., 426, 1-24(2000). 

  80. Jorgensen, B. B. and Revsbech, N. P., "Diffusive boundary layers and the oxygen uptake of sediments and detritus," Limnol. and Oceanogr., 30(1), 111-122(1985). 

  81. Kadlec, R. H. and Reddy, K. R., "Temperature effects in treatment wetlands," Water Environ. Res., 73(5), 543-557(2001). 

  82. Bowman, G. T. and Delfino, J. J., "Sediment oxygen demand techniques: A review and comparison of laboratrory and in situ systems," Water Res., 14, 491-499(1980). 

  83. Sheibley, R. W. and Paulson, A. J., Quantifying benthic nitrogen fluxes in Puget Sound, Washington-A review of available data: US. Geological Survey Scientific Investigations Report 2014-5033, U.S. Geological Survey, Virginia, p. 44(2014). 

  84. Seitzinger, S. P., "Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance," Limnol. and Oceanogr., 33(4, part 2), 702-724(1988). 

  85. Henriksen, K. and Kemp, W. M., "Nitrification in estuarine and coastal marine sediments," Nitrogen Cycling in Coastal Marine Environments: SCOPE 33, Blackburn, T. H. and Sorensen, J. (Eds), John Wiley & Sons Ltd., pp. 207-249(1988). 

  86. Jensen, H. S. and Andersen, F., "Importance of temperature, nitrate and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes," Limnol. and Oceanogr., 37, 577-589(1992). 

  87. Froelich, P. N., "Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism," Limnol. and Oceanogr., 33, 649-668(1988). 

  88. Ward, B. B., "Nitrification," Reference Module in Earth Systems and Environmental Sciences, Elsevier, http://dx.doi.org/10.1016/B978-0-12-409548-9.00697-7(2013). 

  89. Gerardi, M. H., Wastewater Bacteria, John Wiley & Sons, Inc., New Jersey; p. 272(2006). 

  90. Gunnars, A., Blomqvist, S., Johansson, P. and Andersson, C., "Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium," Geochim. et Cosmochim. Acta, 66, 745-758(2002). 

  91. Lehtoranta, J., Ekholm, P. and Pitkanen, H., "Coastal eutrophication thresholds: A matter of sediment microbial processes," Ambio, 38(6), 303-308(2009). 

  92. Sten-Knudesen, O., Biological Membranes: Theory of transport, potentials and electric impulses, Cambridge University Press, Cambridge, p. 696(2002). 

  93. Giblin, A. E., Tobias, G. R., Song, B., Weston, N., Banta, G. T. and Rivera-Monroy, V. H., "The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems," Oceanogr., 26(3), 124-131(2013). 

  94. Herbert, R. A., "Nitrogen cycling in coastal marine ecosystems," FEMS Microbiol. Rev., 23, 563-590(1999). 

  95. Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M. and Widdicombe, S., "Bioturbation: impact on the marine nitrogen cycle," Biochem. Soc. Trans., 39, 315-320(2011). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로