$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Doi-Edwards 구성방정식을 사용한 점탄성 고분자 액체의 대진폭 전단유동거동 예측
The Doi-Edwards Constitutive Equation to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids 원문보기

한국섬유공학회지 = Textile science and engineering, v.54 no.4, 2017년, pp.253 - 267  

안혜진 (부산대학교 공과대학 유기소재시스템공학과) ,  장갑식 (FITI 시험연구원 부품소재사업팀) ,  송기원 (부산대학교 공과대학 유기소재시스템공학과)

Abstract AI-Helper 아이콘AI-Helper

The present study has been designed to predict the nonlinear viscoelastic behavior of concentrated polymer systems in large amplitude oscillatory shear (LAOS) flow fields by means of the Doi-Edwards constitutive equation. Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic...

주제어

참고문헌 (65)

  1. K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(ethylene oxide) Solutions (I) : Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093. 

  2. H. J. Ahn, H. Y. Kuk, J. S. Lee, and K. W. Song, "Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis", Text. Sci. Eng., 2016, 53, 328-339. 

  3. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249. 

  4. K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. 

  5. K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. 

  6. X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. 

  7. K. S. Cho, J. W. Kim, J. E. Bae, J. H. Youk, H. J. Jeon, and K. W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions", Korea-Aust. Rheol. J., 2015, 27, 151-161. 

  8. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183. 

  9. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. 

  10. R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear", J. Rheol., 2008, 52, 1427-1458. 

  11. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. 

  12. J. E. Bae and K. S. Cho, "Semianalytical Methods for the Determination of the Nonlinear Parameter of Nonlinear Viscoelastic Constitutive Equations from LAOS Data", J. Rheol., 2015, 59, 525-555. 

  13. B. Debbaut and H. Burhin, "Large Amplitude Oscillatory Shear and Fourier-Transform Rheology for a High-Density Polyethylene : Experiments and Numerical Simulation", J. Rheol., 2002, 46, 1155-1176. 

  14. S. H. Kim, H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of the Network Model for Associating Polymeric Systems", Korea-Aust. Rheol. J., 2002, 14, 49-55. 

  15. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81. 

  16. G. S. Chang, "Large Amplitude Oscillatory Shear Flow Behavior of Viscoelastic Polymer Solutions", Ph.D. Thesis, Pusan National University, Busan, Korea, 2010. 

  17. L. H. Gross and B. Maxwell, "The Limit of Linear Viscoelastic Response in Polymer Melts as Measured in the Maxwell Orthogonal Rheometer", Trans. Soc. Rheol., 1972, 16, 577-601. 

  18. R. J. Gordon and W. R. Schowalter, "On the Relation between Complex Viscosity and Steady State Shearing in the Maxwell Orthogonal Rheometer", AIChE J., 1970, 16, 318-320. 

  19. R. I. Tanner, "Network Rupture and the Flow of Concentrated Polymer Solutions", AIChE J., 1969, 15, 177-183. 

  20. I. F. MacDonald, "Large Amplitude Oscillatory Shear Flow of Viscoelastic Materials", Rheol. Acta, 1975, 14, 801-811. 

  21. I. F. MacDonald, "Rate-Dependent Viscoelastic Models (II) The MBC Model : An Experimental Assessment", Rheol. Acta, 1975, 14, 906-918. 

  22. P. J. Carreau, "Rheological Equations from Molecular Network Theories", Trans. Soc. Rheol., 1972, 16, 99-128. 

  23. R. B. Bird and P. J. Carreau, "A Nonlinear Viscoelastic Model for Polymer Solutions and Melts - I", Chem. Eng. Sci., 1968, 23, 427-434. 

  24. I. F. MacDonald, "Rate-Dependent Viscoelastic Models (I) Experimental Results as Guidelines in Selecting the Memory Function", Rheol. Acta, 1975, 14, 899-905. 

  25. I. F. MacDonald, B. D. Marsh, and E. Ashare, "Rheological Behavior for Large Amplitude Oscillatory Motion", Chem. Eng. Sci., 1969, 24, 1615-1625. 

  26. H. C. Yen and L. V. McIntire, "Finite Amplitude Dynamic Motion of Viscoelastic Materials", Trans. Soc. Rheol., 1972, 16, 711-726. 

  27. A. Kaye, "Non-Newtonian Flow in Incompressible Fluids", Note No.134, College of Aeronautics, Cranford, UK, 1962. 

  28. B. Bernstein, E. A. Kearsley, and L. J. Zapas, "A Study of Stress Relaxation with Finite Strain", Trans. Soc. Rheol., 1963, 7, 391-410. 

  29. M. H. Wagner, "Analysis of Time-Dependent Nonlinear Stress Growth Data for Shear and Elongational Flow of a Low-Density Branched Polyethylene Melt", Rheol. Acta, 1976, 15, 136-142. 

  30. A. S. Lodge, "Elastic Liquids", Academic Press, New York, 1964. 

  31. A. J. Giacomin, R. S. Jeyaseelan, T. Samurkas, and J. M. Dealy, "Validity of Separable BKZ Model for Large Amplitude Oscillatory Shear", J. Rheol., 1993, 37, 811-826. 

  32. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions : Large Amplitude Oscillatory Shear of a Very High Molecular Weight Polymer in Diethyl Phthalate", J.Rheol., 1996, 40, 167-186. 

  33. M. Doi and S. F. Edwards, "The Theory of Polymer Dynamics", Oxford University Press, Oxford, 1986. 

  34. D. S. Pearson and W. E. Rochefort, "Behavior of Concentrated Polystyrene Solutions in Large-Amplitude Oscillating Shear Fields", J. Polym. Sci. : Polym. Phys. Ed., 1982, 20, 83-98. 

  35. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions : Nonlinear Viscoelasticity and Wall Slip of Two High Molecular Weight Polymers in Tricresyl Phosphate", J. Rheol.,1998, 42, 527-548. 

  36. G. Marrucci, G. Titomanlio, and G. C. Sarti, "Testing of a Constitutive Equation for Entangled Networks by Elongational and Shear Data of Polymer Melts", Rheol. Acta, 1973, 12, 269-275. 

  37. R. B. Bird, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids Vol. 1: Fluid Mechanics", 2nd Ed., John Wiley and Sons, New York, 1987. 

  38. J. A. Yosick, A. J. Giacomin, and P. Moldenaers, "A Kinetic Network Model for Nonlinear Flow Behavior of Molten Plastics in Both Shear and Extension", J. Non-Newt. Fluid Mech., 1997, 70, 103-123. 

  39. J. Mewis and M. M. Denn, "Constitutive Equations Based on the Transient Network Concept", J. Non-Newt. Fluid Mech., 1983, 12, 69-83. 

  40. T. Y. Liu, D. S. Soong, and M. C. Williams, "Transient and Steady Rheology of Polydisperse Entangled Melts : Predictions of a Kinetic Network Model and Data Comparisons", J. Polym. Sci. : Polym. Phys. Ed., 1984, 22, 1561-1587. 

  41. R. S. Jeyaseelan, A. J. Giacomin, and J. G. Oakley, "Simplification of Network Theory for Polymer Melts in Nonlinear Oscillatory Shear", AIChE J., 1993, 39, 846-854. 

  42. W. K. W. Tsang and J. M. Dealy, "The Use of Large Transient Deformations to Evaluate Rheological Models for Molten Polymers", J. Non-Newt. Fluid Mech., 1981, 9, 203-222. 

  43. A. T. Tsai and D. S. Soong, "Measurement of Fast Transient and Steady-State Responses of Viscoelastic Fluids with a Sliding Cylinder Rheometer Executing Coaxial Displacements", J. Rheol., 1985, 29, 1-18. 

  44. A. J. Giacomin and J. G. Oakley, "Obtaining Fourier Series Graphically from Large Amplitude Oscillatory Shear Loops", Rheol. Acta, 1993, 32, 328-332. 

  45. K. W. Song, S. H. Ye, and G. S. Chang, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (IV) : Nonlinear Stress Relaxation in Single-Step Large Shear Deformations", J. Kor. Fiber Soc., 1999, 36, 383-395. 

  46. R. S. Jeyaseelan and A. J. Giacomin, "Structural Network Theory for a Filled Polymer Melt in Large Amplitude Oscillatory Shear", Polymer Gels and Networks, 1995, 3, 117-133. 

  47. H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of Complex Fluids Investigated by a Network Model : A Guideline for Classification", J. Non-Newt. Fluid Mech., 2003, 112, 237-250. 

  48. G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. 

  49. G. S. Chang, H. J. Ahn, and K. W. Song, "Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2016, 53, 317-327. 

  50. H. J. Ahn, G. S. Chang, and K. W. Song, "A Time-Strain Separable K-BKZ Constitutive Equation to Describe the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2017, 54, 230-245. 

  51. P. G. de Gennes, "Reptation of a Polymer Chain in the Presence of Fixed Obstacles", J. Chem. Phys., 1971, 55, 572-579. 

  52. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 1) : Brownian Motion in the Equilibrium State", J. Chem. Soc. Faraday Trans. II, 1978, 74, 1789-1801. 

  53. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 2) : Molecular Motion under Flow", J. Chem. Soc. Faraday Trans. II, 1978, 74, 1802-1817. 

  54. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 3) : The Constitutive Equation", J. Chem. Soc. Faraday Trans. II, 1978, 74, 1818-1832. 

  55. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 4) : Rheological Properties", J. Chem. Soc. Faraday Trans. II, 1979, 75, 38-54. 

  56. R. G. Larson, "Constitutive Equations for Polymer Melts and Solutions", Butterworths, Boston, 1988. 

  57. G. Astarita and G. Marrucci, "Principles of Non-Newtonian Fluid Mechanics", McGraw-Hill, London, 1974. 

  58. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in C : The Art of Scientific Computing", 2nd Ed., Cambridge University Press, New York, 1992. 

  59. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, "Steady Shear Flow Properties of Aqueous Poly (ethylene oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 193-203. 

  60. K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee, "Dynamic Viscoelastic Properties of Aqueous Poly(ethylene oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307. 

  61. F. E. Bailey, Jr. and J. V. Koleske, "Poly(ethylene oxide)", Academic Press, NewYork, 1976. 

  62. K. R. Shah, S. A. Chaudhary, and T. A. Mehta, "Polyox (polyethylene oxide) Multifunctional Polymer in Novel Drug Delivery System", Int. J. Pharm. Sci. Drug Res., 2014, 6, 95-101. 

  63. S. Bekiranov, R. Bruinsma, and P. Pincus, "Solution Behavior of Poly(ethylene oxide) in Water as a Function of Temperature and Pressure", Phys. Rev. E., 1997, 55, 577-585. 

  64. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, and K. Ito, "Aqueous Solution Properties of Oligo- and Poly (ethylene oxide) by Static Light Scattering and Intrinsic Viscosity", Polymer, 1997, 38, 2885-2891. 

  65. P. N. Georgelos and J. M. Torkelson, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems", J. Non-Newt. Fluid Mech., 1988, 27, 191-204. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로