$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Characteristics of Transmissible CTX-M- and CMY-Type β-Lactamase-Producing Escherichia coli Isolates Collected from Pig and Chicken Farms in South Korea 원문보기

Journal of microbiology and biotechnology, v.27 no.9, 2017년, pp.1716 - 1723  

Shin, Seung Won (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ,  Jung, Myunghwan (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ,  Won, Ho Geun (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ,  Belaynehe, Kuastros Mekonnen (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ,  Yoon, In Joong (Chung Ang Vaccine Laboratory) ,  Yoo, Han Sang (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

The rapid dissemination of extended-spectrum ${\beta}$-lactamase (ESBL)-producing Escherichia coli has significantly contributed to public health hazard globally. A total of 281 E. coli strains recovered from pigs and chickens between 2009 and 2015 in South Korea were analyzed for ESBL pr...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The finding of phylogenetic typing was applied to determine the pattern of antimicrobial resistance and the β-lactamase gene distributions among the ESBL-producing E. coli isolates investigated in this work.
  • However, much of them focused on the prevalence of resistant strains and resistance gene. Therefore, this work aimed to study the prevalence of ESBL-producing E. coli isolates recovered from pigs and chickens that had been collected in South Korea, and also to analyze the transfer of ESBL-associated genes and resistance among E. coli strains.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Barton MD. 2000. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13: 279-299. 

  2. Soulsby L. 2007. Antimicrobials and animal health: a fascinating nexus. J. Antimicrob. Chemother. 60: I77-I78. 

  3. Barza M. 2002. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 34: S123-S125. 

  4. Finley RL, Collignon P, Larsson DG, McEwen SA, Li XZ, Gaze WH, et al. 2013. The Scourge of antibiotic resistance: the important role of the environment. Clin. Infect. Dis. 57: 704-710. 

  5. Smet A, Rasschaert G, Martel A, Persoons D, Dewulf J, Butaye P, et al. 2011. In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J. Appl. Microbiol. 110: 541-549. 

  6. Pitout JD, Laupland KB. 2008. Extended-spectrum ${\beta}$ -lactamaseproducing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8: 159-166. 

  7. Sanders CC, Sanders WE. 1992. ${\beta}$ -lactam resistance in gramnegative bacteria - global trends and clinical impact. Clin. Infect. Dis. 15: 824-839. 

  8. Bonnet R. 2004. Growing group of extended-spectrum ${\beta}$ -lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48: 1-14. 

  9. Philippon A, Arlet G, Jacoby GA. 2002. Plasmid-determined AmpC-type ${\beta}$ -lactamases. Antimicrob. Agents Chemother. 46: 1-11. 

  10. Kim J, Lim YM, Jeong YS, Seol SY. 2005. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extendedspectrum ${\beta}$ -lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob. Agents Chemother. 49: 1572-1575. 

  11. Rodriguez-Bano J, Ngugro MD. 2008. Extended-spectrum ${\beta}$ -lactamases in ambulatory care: a clinical perspective. Clin. Microbiol. Infect. 14: 104-110. 

  12. Lim JS, Choi DS, Kim YJ, Chon JW, Kim HS, Park HJ, et al. 2015. Characterization of Escherichia coli-producing extendedspectrum ${\beta}$ -lactamase (ESBL) isolated from chicken slaughterhouses in South Korea. Foodborne Pathog. Dis. 12: 741-748. 

  13. Tamang MD, Nam HM, Kim TS, Jang GC, Jung SC, Lim SK. 2011. Emergence of extended-spectrum ${\beta}$ -Lactamase (CTXM-15 and CTX-M-14)-producing nontyphoid Salmonella with reduced susceptibility to ciprofloxacin among food animals and humans in Korea. J. Clin. Microbiol. 49: 2671-2675. 

  14. Rayamajhi N, Cha SB, Shin SW, Jung BY, Lim SK, Yoo HS. 2011. Plasmid typing and resistance profiling of Escherichia fergusonii and other Enterobacteriaceae isolates from South Korean farm animals. Appl. Environ. Microbiol. 77: 3163-3166. 

  15. Tamang MD, Nam HM, Gurung M, Jang GC, Kim SR, Jung SC, et al. 2013. Molecular Characterization of CTX-M ${\beta}$ -Lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol. 79: 3898-3905. 

  16. Tamang MD, Nam HM, Kim SR, Chae MH, Jang GC, Jung SC, et al. 2013. Prevalence and molecular characterization of CTX-M ${\beta}$ -lactamase-producing Escherichia coli i solated f rom healthy swine and cattle. Foodborne Pathog. Dis. 10: 13-20. 

  17. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, et al. 2005. Establishment of a universal size s tandard strain f or u se with the PulseNet s tandardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J. Clin. Microbiol. 43: 1045-1050. 

  18. Clinical and Laboratory Standard Institutes. 2013. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement M100-S23. Clinical and Laboratory Standards Institute, Wayne, PA. 

  19. Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, et al. 2008. Characterization of TEM-, SHV- and AmpC-type ${\beta}$ -lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int. J. Food Microbiol. 124: 183-187. 

  20. Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, et al. 2005. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 49: 1319-1322. 

  21. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important ${\beta}$ -lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65: 490-495. 

  22. Jeong SH, Bae IK, Kwon SB, Lee JH, Song JS, Jung HI, et al. 2005. Dissemination of transferable CTX-M-type extendedspectrum ${\beta}$ -lactamase-producing Escherichia coli in Korea. J. Appl. Microbiol. 98: 921-927. 

  23. Clermont O, Bonacorsi S, Bingen E. 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66: 4555-4558. 

  24. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63: 219-228. 

  25. Shin SW, Byun JW, Jung M, Shin MK, Yoo HS. 2014. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli Isolates from South Korean cattle farms. J. Microbiol. 52:785-793. 

  26. Shin SW, Shin MK, Jung M, Belaynehe KM, Yoo HS. 2015. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl.Environ.Microbiol. 81: 5560-5566. 

  27. Agerso Y, Aarestrup FM. 2013. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J. Antimicrob. Chemother. 68: 569-572. 

  28. Hiroi M, Yamazaki F, Harada T, Takahashi N, Iida N, Noda Y, et al. 2012. Prevalence of extended-spectrum ${\beta}$ -lactamaseproducing Escherichia coli and Klebsiella pneumoniae in foodproducing animals. J. Vet. Med. Sci. 74: 189-195. 

  29. Ho PL, Chow KH, Lai EL, Lo WU, Yeung MK, Chan J, et al. 2011. Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to 'critically important' antibiotics among food animals in Hong Kong, 2008-10. J. Antimicrob. Chemother. 66: 765-768. 

  30. Dierikx C, van der Goot J, Fabri T, van Essen-Zandbergen A, Smith H, Mevius D. 2013. Extended-spectrum- ${\beta}$ -lactamaseand AmpC- ${\beta}$ -lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J. Antimicrob. Chemother. 68: 60-67. 

  31. Hiki M, Usui M, Kojima A, Ozawa M, Ishii Y, Asai T. 2013. Diversity of plasmid replicons encoding the blaCMY-2 gene in broad-spectrum cephalosporin-resistant Escherichia coli f rom livestock animals in Japan. Foodborne Pathog. Dis. 10: 243-249. 

  32. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Canica MM, et al. 2008. Intercontinental emergence of Escherichia coli clone O25 : H4-ST131 producing CTX-M-. J. Antimicrob. Chemother. 61: 273-281. 

  33. Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, et al. 2013. Public health risks of enterobacterial isolates producing extended-spectrum ${\beta}$ -lactamases or AmpC ${\beta}$ -lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin. Infect. Dis. 56: 1030-1037. 

  34. Winokur PL, Vonstein DL, Hoffman LJ, Uhlenhopp EK, Doern GV. 2001. Evidence for transfer of CMY-2 AmpC $\beta$ -lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob. Agents Chemother. 45: 2716-2722. 

  35. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. 2010. High prevalence of extended-spectrum ${\beta}$ -lactamases and plasmid-mediated AmpC ${\beta}$ -lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn. Microbiol. Infect. Dis. 67: 261-265. 

  36. Tarnberg M, Ostholm-Balkhed A, Monstein HJ, Hallgren A, Hanberger H, Nilsson LE. 2011. In vitro activity of ${\beta}$ -lactam antibiotics against CTX-M-producing Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 30: 981-987. 

  37. Yan JJ, Ko WC, Tsai SH, Wu HM, Jin YT, Wu JJ. 2000. Dissemination of CTX-M-3 and CMY-2 ${\beta}$ -lactamases among clinical isolates of Escherichia coli in southern Taiwan. J. Clin. Microbiol. 38: 4320-4325. 

  38. Animal and Plant Quarantine Agency. 2014. Antimicrobial use in livestock and monitoring of antimicrobial resistance in animal and carcass. Korea Food and Drug Administraition. Seoul, South Korea. 10-12. 

  39. Brinas L, Moreno MA, Teshager T, Saenz Y, Porrero MC, Dominguez L, et al. 2005. Monitoring and characterization of extended-spectrum ${\beta}$ -lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob. Agents Chemother. 49: 1262-1264. 

  40. Hammerum AM, Larsen J, Andersen VD, Lester CH, Skytte TSS, Hansen F, et al. 2014. Characterization of extended-spectrum ${\beta}$ -lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third-or fourth-generation cephalosporins. J. Antimicrob. Chemother. 69: 2650-2657. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로