$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록이 없습니다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 나노 사물인터넷 기술에서 연구가 진행되고 있는 그래핀 기반의 테라헤르츠 밴드 통신 기술, 생물학적 분자통신 기술 동향을 기술하였다.

가설 설정

  • 나노 머신들이 세포질이나 공기 등과 같은 유체 매질로 채워져 분자들이 전파할 수 공간에 배치되어 있다고 가정한다. 분자 방출 프로세스(emission process)는 주어진 입력에 따라 공간 내에 분자의 방출을 통해서 발생되는 출력 신호를 제공한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
생물학적 분자 통신은 어떤 방식으로 정보를 전달하는가? 생물학적 분자 통신은 분자 내에 인코딩된 정보의 송수신으로 정의된다[13], [14]. 정보를 보내는 나노 머신은 정보 분자(예: DNA, 단백질, 펩타이드)들한테로 정보를 인코딩하며, 정보는 DNA 구성 요소 내에서 전달될 수 있다[8].
사물인터넷은 무엇인가? 사물인터넷(Internet of Thing: IoT)은 사물의 연결을 통해 정보의 분석, 가공, 예측이 가능한 인프라 기술로써, 무선통신 센싱 디바이스, 네트워크, 연결 플랫폼, 상호운영 플랫폼으로 구성되며, 넓은 범위로는 빅데이터, 클라우드 컴퓨팅, 딥러닝 기술까지를 포함하여 지능형 사물인터넷으로 확장된다. 사물인터넷은 현재 RFID, USN, M2M의 영역을 넘어 인터넷의 영향력을 일상생활에서까지 보편적이고 개인적으로 친밀하게 만들고 있다.
기존 사물인터넷의 한계와 개선점은 무엇인가? 그러나 현재 스마트 시티, 스마트 홈, 스마트 팩토리 등에서 사용하고 있는 사물인터넷은 소모 전력, 형상의 크기, 가격 등의 이유로 제한된 사물의 연결만 가능하다. 이러한 제약은 수많은 사물인터넷 기기의 배터리 교체와 같은 유지보수, 대량 배포나 설치를 어렵게 만들기 때문에, 더 정밀한 데이터 수집과 사람이 접근하기 어려운 지역까지의 응용을 위해서는 훨씬 전력 소모가 적고, 초소형이며, 저렴한 기술이 요구된다. 이를 위해 나노 크기의 디바이스를 이용한 나노 사물인터넷(Internet of Nano-Things: IoNT)이라는 새로운 용어가 출현하였으며, 이는 IoT의 다음 단계 기술 분야 중하나로 여러 학문 간 융합을 통해 획기적인 기술 발전을 이끌 수 있는 매우 유망한 도전기술로 전망하고 있다[3]~[5].
질의응답 정보가 도움이 되었나요?

참고문헌 (40)

  1. "Gartner says 6.4 billion connected "Things" will be in use in 2016, up 30 percent from 2015", Gartner, Nov. 2015. 

  2. "More than 30 billion devices will wirelessly connect to the internet of everything in 2020", ABI Research, May 2013. 

  3. I. F. Akyildiz, F. Brunetti, and C. Blazquez, "Nanonetworks: A new communication paradigm", Computer Networks, vol. 52, no. 12, pp. 2260-2279, Aug. 2008. 

  4. I. F. Akyildiz, J. M. Jornet, "The internet of nano-things", IEEE Wireless Communications, vol. 17, no. 6, pp. 58-63, Dec. 2010. 

  5. I. F. Akyildiz, J. M. Jornet, and M. Pierobon, "Nano networks: A new frontier in communications", Communications of the Acm, vol. 54, no. 11, Nov. 2011. 

  6. "Internet of nano things market by communication type(short & long distance communication), by nano components & devices(cameras, phones, scalar sensors, processors, memory cards, power systems, antennas & transceivers) - Worldwide Forecast & Analysis(2016-2020)", Markets and Markets, 2014. 

  7. S. Balasubramaniam, J. Kangasharju, "Realizing the internet of nano things: Challenges, solutions, and applications", Computer, vol. 46 no. 2, pp. 62-68, 2013. 

  8. A. Nayyar, V. Puri, and D.-N. Le, "Internet of nano things (IoNT): Next evolutionary step in nanotechnology", Nanoscience and Nanotechnology 2017, vol. 7, no. 1, pp. 4-8, Jul. 2017. 

  9. Broadband Wireless Networking Lab, Georgia Institute of Technology, Dr. Ian F. Akyildiz, http://www.ece.gatech. edu/research/labs/bwn/IFA/index.html 

  10. I. F. Akyildiz, J. M. Jornet, "Electromagnetic wireless nano sensor networks", Nano Communication Networks(Elsevier), vol. 1, no. 1, pp. 3-19, Mar. 2010. 

  11. C. Rutherglen, P. Burke, "Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes", Small, vol. 5, no. 8, pp. 884-906, Apr. 2009. 

  12. M. Hasan, S. Arezoomandan, H. Condori, and B. Sensale-Rodriguez, "Graphene terahertz devices for communications applications", Nano Communication Networks, vol. 10, pp. 68-78, Dec. 2016. 

  13. I. F. Akyildiz, F. Brunetti, and C. Blazquez, "Nanonetworks: A new communication paradigm", Computer Networks (Elsevier), vol. 52, no. 12, pp. 2260-2279, Aug. 2008. 

  14. T. Suda, M. Moore, T. Nakano, R. Egashira, and A. Enomoto, "Exploratory research on molecular communication between nanomachines", Genetic and Evolutionary Computation Conference(GECCO), Late Breaking Papers, Jun. 2005. 

  15. K. Dabhi, A. Maheta, "Internet of nano things-the next big thing", IJESC 2017, vol. 7, no. 4, pp. 10602-10604, Apr. 2017. 

  16. S. Balasubramaniam, J. Kangasharju, "Realizing the internet of nano things: Challenges, solutions, and applications". Computer, vol. 46, no, 2, pp. 62-68, 2013. 

  17. J. Jarmakiewicz, K. Parobczak, "On the internet of nano things in healthcare network, In Military Communications and Information Systems(ICMCIS)", 2016 International Conference on. IEEE, pp. 1-6, May 2016. 

  18. A. Nayyar, V. Puri, "Data glove: Internet of Things(IoT) based smart wearable gadget", British Journal of Mathematics & Computer Science, vol. 15 no. 5, 2016. 

  19. I. F. Akyildiz, J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications", Physical Communication, pp. 16-32, Dec. 2014. 

  20. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, "Unique prospects for graphene-based terahertz modulators", Applied Physics Letters, vol. 99, no. 11, 2011. 

  21. J. M. Jornet, I. F. Akyildiz, "Graphene-based plasmonic nano-transceiver for terahertz band communication", The 8th European Conference on Antennas and Propagation (EuCAP 2014), ISBN: 978-8-8907-0184-9, pp. 492-496, Apr. 2014. 

  22. J. K. Park, S. M. Song, J. H. Mun, and B. J. Cho, "Graphene gate electrode for mos structure-based electronic devices", Nano Letters, vol. 11, no. 12, pp. 5383-5386, 2011. 

  23. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, "Switching terahertz waves with gate-controlled active graphene metamaterials", Nature Materials. 11, pp. 936-941, 2012. 

  24. P. K. Singh, G. Aizin, N. Thawdar, M. Medley, and J. M. Jornet, "Graphene-based plasmonic phase modulator for terahertz-band communication", (EuCAP)2016 10th European Conference on Antennas and Propagation, pp. 10-15, Apr. 2016. 

  25. K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature, vol. 490, no. 7419, pp. 192-200, 2012. 

  26. A. C. Ferrari, F. Bonaccorso, V. Falko, et al., "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, vol. 7, no. 11, pp. 4598-4810, 2015. 

  27. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials", Nature Nanotechnol, vol. 6, pp. 630-634, Sep. 2011. 

  28. F. H. L. Koppens, D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light matter interactions", Nano Letters, vol. 11, no. 8, pp. 3370-3377, Aug. 2011. 

  29. L. Zakrajsek, E. Einarsson, and N. Thawdar, "Lithographically defined plasmonic graphene antennas for terahertz- band communication", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1553-1556, Feb. 2016. 

  30. J. M. Jornet, I. F. Akyildiz, "Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks", IEEE JSAC, Special Issue on Emerging Technologies for Communications, vol. 31, no. 12, pp. 685-694, 2013. 

  31. I. F. Akyildiz, J. M. Jornet, and C. Han, "Teranets: Ultra-broadband communication networks in the terahertz band", IEEE Wireless Communications, vol. 21, no. 4, pp 130-135, Aug. 2014. 

  32. I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation", Photonics and Nanostructures: Fundamentals and Applications, vol. 10, no. 4, pp. 353-358, Oct. 2012. 

  33. M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack", Applied Physics Letters, vol. 101, no. 21, pp. 214102, 2012. 

  34. M. Aldrigo, M. Dragoman, and D. Dragoman, "Smart antennas based on graphene", Journal of Applied Physics, vol. 116, no. 11, pp. 114302, 2014. 

  35. I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy, "The internet of bio-nano things", IEEE Communications Magazine, vol. 53, no. 3, pp. 32-40, Mar. 2015. 

  36. L. J. Kahl, D. Endy, "A survey of enabling technologies in synthetic biology", Journal of Biological Engineering, vol. 7, no. 1, pp. 13, May 2013. 

  37. M. T. Barros, S. Balasubramaniam, B. Jennings, and Y. Koucheryavy, "Transmission protocols for calcium-signalingbased molecular communications in deformable cellular tissue", IEEE Transactions on Nanotechnology, vol. 13, no. 4, pp. 779-788, May 2014. 

  38. M. J. Moore, T. Suda, and K. Oiwa, "Molecular communication: Modeling noise effects on information rate", IEEE Transactions on Nanobioscience, vol. 8, no. 2, pp. 169-180, Jun. 2009. 

  39. Y. Chahibi, M. Pierobon, S. O. Song, and I. F. Akyildiz, "A molecular communication system model for particulate drug delivery systems", IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, pp. 3468-3483, 2013. 

  40. I. F. Akyildiz, F. Fekri, R. Sivakumar, C. R. Forest, and B. K. Hammer, "MoNaCo: Fundamentals of molecular nano-communication networks", IEEE Wireless Communications, vol. 19, no. 5, pp. 12-18, Oct. 2012. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로