최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국물환경학회지 = Journal of Korean Society on Water Environment, v.33 no.3, 2017년, pp.302 - 310
윤금희 (고려대학교 대학원 환경기술.정책협동) , 윤주환 (고려대학교 환경시스템공학과)
The morphological characteristics of granules developing in anaerobic-anoxic (An-Ax) and anaerobic-aerobic (An-Ox) sequencing batch reactors (SBRs) were examined. The granules developed in the both SBRs after 200 days of laboratory operation. The average diameters of the granules were
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
전형적인 입상화의 특징은? | 전형적인 입상화는 대표적인 호기성 공정인 활성슬러지에서 감소성장(declining growth) 혹은 내생성장(endogenous growth) 단계로 운전될 때 미생물이 생산하는 Biopolymer, Exocelluar polymer 등 다양하게 나타나는 세포외부고분자물질(extracellular polymeric substances; EPS)이 응집제의 역할을 하면서 슬러지 플럭(floc)을 형성한다(McKinney, 1956). 부유상태의 미생물들에게 플럭형성은 에너지 측면에서나 기질 및 영양소공급에서 엄청난 환경적 장점이 있다 (Yun et al. | |
플럭형성은 부유상태의 미생물들과 관련하여 어떤 장점이 있는가? | 전형적인 입상화는 대표적인 호기성 공정인 활성슬러지에서 감소성장(declining growth) 혹은 내생성장(endogenous growth) 단계로 운전될 때 미생물이 생산하는 Biopolymer, Exocelluar polymer 등 다양하게 나타나는 세포외부고분자물질(extracellular polymeric substances; EPS)이 응집제의 역할을 하면서 슬러지 플럭(floc)을 형성한다(McKinney, 1956). 부유상태의 미생물들에게 플럭형성은 에너지 측면에서나 기질 및 영양소공급에서 엄청난 환경적 장점이 있다 (Yun et al., 2000). | |
혐기(An)-호기(Ox) 및 혐기(An)-무산소(Ax) 교호 환경조건의 장기간 운전을 통해 생성된 PAO 및 dPAO 입상슬러지의 형태를 관찰하고 기존연구와 관련하여 분석하게 된 배경은? | 혐기(anaerobic: An)-호기(oxic: Ox) 교호환경조건에서 EBPR (enhanced biological phosphorus removal)을 가능하게 하는 인 축적 미생물(phosphorus accumulating organism: PAO)의 입상화가 보고되고 있으며, 혐기(anaerobic: An)-호기(oxic: Ox)-무산소(anoxic: Ax) 교호환경조건에서 질소·인 동시제거 미생물(denitrifying Phosphorus Accumulating Organism: dPAO)에 의한 입상화도 제시되고 있다. 하지만 입상슬러지공정의 적용이 다양함에도 불구하고 입상슬러지의 형성기작에 대한 이해와 연구의 부족으로 공정에 대한 운전제어가 어렵다. 또한 지금까지 관찰된 생물학적 입상슬러지의 형태는 기질과 운전조건 등 매우 다양하지만 형태학적 측면에서 주요한 요인에 대한 학술정보와 연구가 없었다. 따라서 본 논문에서는 혐기(An)-호기(Ox) 및 혐기(An)-무산소(Ax) 교호 환경조건의 장기간 운전을 통해 생성된 PAO 및 dPAO 입상슬러지의 형태를 관찰하고 기존 문헌연구의 다양한 운전조건을 연관하여 서로 다른 형태를 유발하는 주요요인에 대해 분석하고자 하였다. |
Adav S. S., Lee D. J., and Lai J. Y. (2007). Effect of Aeration Intensity on Formation of Phenol-fed Aerobic Granules and Extracellular Polymeric Substances, Applied Microbiology and Biotechnology, 77, 175-182.
Angela M., Beatrice B., and Mathieu S. (2011). Biologically Induced Phosphorus Precipitation in Aerobic Granular Sludge Process, Water Research, 45, 3776-3786.
Angela M., Mathieu P., Beatrice B., and Mathieu S. (2012). Parameters Influencing Calcium Phosphate Precipitation in Granular Sludge Sequencing Batch Reactor, Chemical Engineering Science, 77, 165-175.
American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA and WEF). (2005). Standard Methods for the Examination of Water and Wastewater, 21st Eds., Washington DC, USA.
Beun J. J., Hendriks A., and Van Loosdrecht M. C. M. (1999). Aerobic Granulation in a Sequencing Batch Reactor, Water Research, 33(10), 2283-2290.
Carvalho G., Meyer R. L., Yuan Z., and Keller J. (2006). Differential Distribution of Ammonia- and Nitrite-oxidising Bacteria in Flocs and Granules from a Nitrifying/denitrifying Sequencing Batch Reactor, Enzyme and Microbial Technology, 39, 1392-1398.
Coma M., Puig S., Balaguer M. D., and Colprim J. (2010). The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low-strength Wastewater, Chemical Engineering Journal, 164, 208-213.
De Zeeuw, W. J. (1988). Granular sludge in UASB reactors, Proceeding of the GASMAT-Workshop. "Granular anaerobic sludge" microbiology and technology, in Lettinga, G., Zehnder A. J. B., Grotenkuis J. T. C., Hulshoff Pol L. W. (Eds.), Pudoc. Wageningen, the Netherlands, 132-145.
Djamila A. H., Jacqueline T., Sven L., Thomas W., Thomas M., Daniela T., Andreas J., Wolfgang D., and Juliane H. (2008). Correlation of EPS Content in Activated Sludge at Different Sludge Retention Times with Membrane Fouling Phenomena, Water Research, 42, 1475-1488.
Dulekgurgen E., Artan N., Orhon D., and Wilderer P. A. (2008). How does Shear Affect Aggregation in Granular Sludge Sequencing Batch Reactors? Relations between Shear, Hydrophobicity, and Extracelluar Polymeric Substances, Water Science and Technology, 58(2), 267-276.
Frolund B.. Palmgren R., Keiding K., and Nielsen P. H. (1996). Extraction of Extracelluar Polymers from Activated Sludge using a Cation Exchange Resin, Water Research, 30, 1749-1758.
Gao D., Liu L., Liang H., and Wu W. M. (2011). Comparison of Four Enhancement Strategies for Aerobic Granulation in Sequencing Batch Reactors, Journal of Hazardous Materials, 186, 320-327.
Hood C. R. and Randall A. A. (2001). A Biochemical Hypothesis Explaining the Response of Enhanced Biological Phosphorus Removal Biomass to Organic Substrates, Water Research, 35(11), 2758-2766.
Hulshoff Pol, L. W., De Zeeuw, W. J., Velzeboer, C. T. M., and Lettinga, G. (1983). Granulation in UASB Reactors, Water Science and Technology, 15(8-9), 291-304.
Jang H. L. (2002). Characterization of Aerobic Granular Sludge in SBR with High Loading Condition, Master's Thesis, Korea University, Seoul, Korea, 31-35. [Korean Literature]
Jorand F., Boue-Bigne F., Block J. C., and Urvain V. (1998). Hydrophobic/hydrophilic Properties of Activated Sludge Exopolymeric Substances, Water Science and Technology, 37(4-5), 307-315.
Kim S. H., Choi H. C., and Kim I. S. (2004). Enhanced Aerobic Floc-like Granulation and Nitrogen Removal in a Sequencing Batch Reactor by Selection of Settling Velocity, Water Science and Technology, 50, 157-162.
Letitinga, G., van Velsen, A. F. M., Hosma, S. W., de Zeeuw, W., and Klapwijk, A. (1980). Use of the Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment, Especially for Anaerobic Treatment, Biotechnology and Bioengineering, 22(4), 699-734.
Li, A., Li, X., and Yu, H. (2011). Effect of the Food to Microorganism (F/M) Ratio on the Formation and Size of Aerobic Sludge Granules, Process Biochemistry, 46(12), 2269-2276.
Li, X. M., Liu, Q. Q., Yang, Q., Guo, L., Zeng, G. M., Hu, J. M., and Zheng, W. (2009). Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by $Mg^{2+}$ Augmentation, Bioresource Technology, 100, 64-67.
Li, Y., Liu, Y., and Xu, H. (2008). Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR?, Bioresource Technology, 99, 7672-7677.
Liu, H. and Fang, H. H. P. (2002). Extraction of Extracellular Polymeric Substances (EPS) of Sludges, Journal of Biotechnology, 95, 249-256.
Liu, Y. Q., Liu, Y., and Tay, J. H. (2004). The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules, Applied Microbiology and Biotechnology, 65, 143-148.
Liu, T. and Tay, J. H. (2004). State of the Art of Biogranulation Technology for Wastewater Treatment, Biotechnology Advances, 22(7), 533-563.
McKinney, R. E. (1956). Biological Flocculation, Biological Treatment of Sewage and Industrial Wastes, Ed. McCabe, J. and Eckenfelder, W. W., Reinhold, New York, N. Y., 88-117.
McSwain, B. S., Irvine, R. L. and Wilderer, P. A. (2004). The Influence of Settling Time on the Formation of Aerobic Granules, Water Science and Technology, 50(10), 195-202.
McSwain, B. S., Irvine, R. L., Hausner, M., and Wilderer, P. A. (2005). Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge, Applied and Environmental Microbiology, 71, 1051-1057.
Mino, T., Satoh, H., and Matsuo T. (1994). Metabolisms of Different Bacterial Populations in Enhanced Biological Phosphate Removal Processes, Water Science and Technology, 29(7), 67-100.
Mishima, K. and Nakamura, M. (1991). Self Immobilization of Aerobic Activated Sludge - a Pilot Study of the Aerobic Upflow Sludge Blanket Process in Municipal Sewage Treatment, Water Science and Technology, 23, 981-990.
Morgenroth, E., Sherden, T., van Loosdrecht, M. C. M., Heignen, J. J., and Wilderer, P. A. (1997). Aerobic Granulation in a Sequencing Batch Reactor, Water Research, 31, 3191-3194.
Ni, B. J., Zeng, R. J., Fang, F., Xie, W. M., Sheng, G. P., and Yu, H. Q. (2010). Fractionating Soluble Microbial Products in the Activated Sludge Process, Water Research, 44, 2292-2302.
Pevere, A., Guibaud, G., van Hullebusch, E. D., Boughzala, W., and Lens, P. N. L. (2007). Effect of $Na^{+}\;and\;Ca^{2+}$ on the Aggregation Properties of Sieved Anaerobic Granular Sludge, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306, 142-149.
Qin, L., Liu, Y., and Tay, J. H. (2004). Effect of Settling Time on Aerobic Granulation in Sequencing Batch Reactor, Biochemical Engineering Journal, 21, 47-52.
Sheng, G. P., Yu, H. Q., and Yu, Z. (2005). Extraction of the Extracellular Polymeric Substances from a Photosynthetic Bacterium Rhodopseudomonas Acidophila, Applied Microbiology and Biotechnology, 67, 125-130.
Sheng, G. P., Yu, H. Q., and Li, X. Y. (2010). Extracellular Polymeric Substances (EPS) of Microbial Aggregates in Biological Wastewater Treatment Systems: A review, Biotechnology Advances, 28, 882-894.
Sun, X. F., Wang, S. G., Xiao, X. M., Chen, J. P., Li, X. M., Gao, B. Y., and Ma, Y. (2009). Spectroscopic Study of $Zn^{2+}\;and\;Co^{2+}$ Binding to Extracellular Polymeric Substances (EPS) from Aerobic Granules, Journal of colloid and Interface Sciences, 335, 11-17.
Tay, J. H. and Yan, Y. G. (1996). Influence of Substrate Concentration on Microbial Selection and Granulation During Start-up of Upflow Anaerobic Sludge Blanket Reactors, Water research, 36, 702-712.
Tay, J. H., Liu, Q. S., and Liu, Y. (2001). The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules, Applied and Environmental Microbiology, 57, 227-233.
Wang, Z. W., Liu, Y., and Tay, J. H. (2006). The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation, Chemosphere, 62, 767-771.
Wang, Z., Liu, Y., and Tay, J. H. (2007). Biodegradability of Extracellular Polymeric Substances Produced by Aerobic Granules, Applied Microbiology and Biotechnology, 74, 462-466.
Weng, C. N. and Molof, A. H. (1974). Nitrification in the Biological Fixed Film Rotating Disk System, Journal of the Water Pollution Control Federation, 46, 1674-1685.
Wu, C. Y., Peng, Y. Z., Wang, S. Y., and Ma, Y. (2010). Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro - to Micro-scale, Water Research, 44, 807-814.
Yun, Z., Choi, E., Park, Y., Lee, H., Jeong, H., Kim, K., Lee, H., Rho, K., and Gil, K. (2000). Extracellular Polymeric Substances in Relations to Nutrient Removal from SBBR, Proceeding of the 2000 IWA Specialty Conference on Extracellular Polymeric Substances: The construction material of Biofilm, Mulheim, Germany, Sept., 18-22.
Zhang, B., Ji, M., Qiu, Z., Liu, H., Wang, J., and Li, J. (2011). Microbial Population Dynamics During Sludge Granulation in an Anaerobic-aerobic Biological Phosphorus Removal System, Bioresource Technology, 102, 2474-2480.
Zheng, Y. M., Yu, H. Q., Liu, S. J., and Liu, X. Z. (2006). Formation and Instability of Aerobic Granules Under High Organic Loading Conditions, Chemosphere, 63(10), 1791-1800.
Zheng, Y. M. and Yu, H. Q. (2007). Determination of the Pore Size Distribution and Porosity of Aerobic Granules Using Size Exclusion Chromatography, Water research, 41, 39-46.
Zhou, W., Imai, T., Ukita, M., Sekine, M. and Higuchi, T. (2006). Triggering Forces for Anaerobic Granulation in UASB Reactors, Process Biochemistry, 41, 36-43.
Zhu, L., Lv, M., Dai, X., Yu, Y., Qi, H., and Xu, X. (2012). Role and Significance of Extracellular Polymeric Substances on the Property of Aerobic Granule, Bioresource Technology, 107, 46-54.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.