$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Inverse Correlation between Extracellular DNase Activity and Biofilm Formation among Chicken-Derived Campylobacter Strains 원문보기

Journal of microbiology and biotechnology, v.27 no.11, 2017년, pp.1942 - 1951  

Jung, Gi Hoon (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ,  Lim, Eun Seob (Department of Food Biotechnology, Korea University of Science and Technology) ,  Woo, Min-Ah (Division of Food Safety, Distribution and Standard, Korea Food Research Institute) ,  Lee, Joo Young (Food Analysis Center, Korea Food Research Institute) ,  Kim, Joo-Sung (Department of Food Biotechnology, Korea University of Science and Technology) ,  Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)

Abstract AI-Helper 아이콘AI-Helper

Campylobacter jejuni and Campylobacter coli are important foodborne pathogenic bacteria, particularly in poultry meat. In this study, the presence of extracellular DNase activity was investigated for biofilm-deficient Campylobacter strains versus biofilm-forming Campylobacter strains isolated from c...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In addition, the role of extracellular DNase activity is poorly understood in the biofilm formation of the Campylobacter natural isolates. Therefore, this study was conducted to investigate the presence of extracellular DNase activity in biofilm-forming versus biofilm non-forming Campylobacter strains isolated from raw chicken meats, to understand the effects of this activity on biofilm formation by Campylobacter.
본문요약 정보가 도움이 되었나요?

참고문헌 (49)

  1. Allos BM. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin. Infect. Dis. 32: 1201-1206. 

  2. Tam C C, R odrigues L C, V iviani L , Dodds J P, Evans M R, Hunter PR, et al. 2012. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 61: 69-77. 

  3. Salloway S, Mermel LA, Seamans M, Aspinall GO, Nam Shin JE, Kurjanczyk L, et al. 1996. Miller-Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect. Immun. 64: 2945-2949. 

  4. Gunther NW, Chen CY. 2009. The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol. 26: 44-51. 

  5. Joshua GWP, Guthrie-Irons C, Karlyshev AV, Wren BW. 2006. Biofilm formation in Campylobacter jejuni. Microbiology 152: 387-396. 

  6. Kalmokoff M, Lanthier P, Tremblay T, Foss M, Lau PC, Sanders G, et al. 2006. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol. 188: 4312-4320. 

  7. Kim S, Park C, Lee E , Bang W, Kim Y, Kim J. 2017. Biofilm formation of Campylobacter strains isolated from raw chickens and its reduction with DNase I treatment. Food Control 71: 94-100 

  8. Teh AHT, Lee SM, Dykes GA. 2014. Does Campylobacter jejuni form biofilms in food-related environments? Appl. Environ. Microbiol. 80: 5154-5160 

  9. Reuter M, Mallett A, Pearson BM, van Vliet AHM. 2010. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl. Environ. Microbiol. 76: 2122-2128. 

  10. Brown HL, Reuter M, Salt LJ, Cross KL, Betts RP, van Vliet AHM. 2014. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni. Appl. Environ. Microbiol. 80: 7053-7060. 

  11. Sutherland IW. 2001. The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol. 9: 222-227. 

  12. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295: 1487. 

  13. Brown HL, Hanman K, Reuter M, Betts RP, van Vliet AHM. 2015. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Front. Microbiol. 6: 699. 

  14. Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AHM. 2015. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS One 10: e0121680. 

  15. Svensson SL, Pryjma M, Gaynor EC. 2014. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS One 9: e106063. 

  16. Kim J, Park C, Kim Y. 2015. Role of flgA for flagellar biosynthesis and biofilm formation of Campylobacter jejuni NCTC11168. J. Microbiol. Biotechnol. 25: 1871-1879. 

  17. Okshevsky M, Meyer RL. 2014. Evaluation of fluorescent stains for visualizing extracellular DNA in biofilms. J. Microbiol. Methods 105: 102-104. 

  18. Wu J, Xi C. 2009. Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Appl. Environ. Microbiol. 75: 5390-5395. 

  19. Branda SS, Vik A, Friedman L, Kolter R. 2005. Biofilms: the matrix revisited. Trends Microbiol. 13: 20-26. 

  20. Okshevsky M, Regina VR, Meyer RL. 2015. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol. 33: 73-80. 

  21. Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. 2013. Life after death: the critical role of extracellular DNA in microbial biofilms. Lett. Appl. Microbiol. 57: 467-475. 

  22. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, et al. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4: e5822. 

  23. Flemming H, Ridgway H. 2009. Biofilm control: conventional and alternative approaches, pp. 103-117. In Flemming H, Murthy PS, Venkatesan R, Cooksey K (eds.), Marine and Industrial Biofouling. Springer, Berlin-Heidelberg. 

  24. Shikongo-Nambabi MNNN, Shoolongela A, Schneider MB. 2012. Control of bacterial contamination during marine fish processing. J. Biol. Life Sci. 3: 1-17. 

  25. Chmielewski RAN, Frank JF. 2003. Biofilm formation and control in food processing facilities. Compr. Rev. Food Sci. Food Saf. 2: 22-32. 

  26. Sofos JN, Geornaras I. 2010. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci. 86: 2-14. 

  27. Harvey J, Keenan KP, Gilmour A. 2007. Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol. 24: 380-392. 

  28. Costerton JW, Stewart PS. 2001. Battling biofilms. Sci. Am. 285: 74-81. 

  29. Mulcahy H, Charron-Mazenod L, Lewenza S. 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 4: e1000213. 

  30. Sena-Velez M, Redondo C, Graham JH, Cubero J. 2016. Presence of extracellular DNA during biofilm formation by Xanthomonas citri subsp. citri strains with different host range. PLoS One 11: e0156695. 

  31. Jakubovics NS, Burgess JG. 2015. Extracellular DNA in oral microbial biofilms. Microbes Infect. 17: 531-537. 

  32. Hymes SR, Randis TM, Sun TY, Ratner AJ. 2013. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo. J. Infect. Dis. 207: 1491-1497. 

  33. Okshevsky M, Regina VR, Meyer RL. 2015. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol. 33: 73-80. 

  34. Tetz VV, Tetz GV. 2010. Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms. DNA Cell Biol. 29: 399-405. 

  35. Tetz GV, Artemenko NK, Tetz VV. 2009. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother. 53: 1204-1209. 

  36. Cho C, Chande A, Gakhar L, Bakaletz LO, Jurcisek JA, Ketterer M, et al. 2015. Role of the nuclease of nontypeable Haemophilus influenzae in dispersal of organisms from biofilms. Infect. Immun. 83: 950-957. 

  37. Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS, et al. 2011. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS One 6: e26714. 

  38. Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, et al. 2011. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 82: 1015-1037. 

  39. Tran TM, MacIntyre A, Khokhani D, Hawes M, Allen C. 2016. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence. Environ. Microbiol. 18: 4103-4117. 

  40. Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, et al. 2008. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb. Pathog. 45: 45-52. 

  41. Park J, Lee J, Kim C, Lee J, Cho MH, Lee J. 2012. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnol. Lett. 34: 655-661. 

  42. Doern CD, Roberts AL, Hong W, Nelson J, Lukomski S, Swords WE, et al. 2009. Biofilm formation by group A Streptococcus: a role for the streptococcal regulator of virulence (Srv) and streptococcal cysteine protease (SpeB). Microbiology 155: 46-52. 

  43. Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M, Cheung AL, Lasa I, et al. 2010. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect. 12: 55-64. 

  44. Tsang LH, Cassat JE, Shaw LN, Beenken KE, Smeltzer MS. 2008. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PLoS One 3: e3361. 

  45. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346-349. 

  46. Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, et al. 2013. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol. 195:1645-1655. 

  47. Monnappa AK, Dwidar M, Seo JK, Hur J , Mitchell RJ. 2014. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci. Rep. 4: 3811. 

  48. Boehm M, Lind J, Backert S, Tegtmeyer N. 2015. Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration. Eur. J. Microbiol. Immunol. (Bp) 5: 68-80. 

  49. Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285-293. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로