$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

천해환경에서 적응 알고리즘을 이용한 음향 등화기의 성능 비교
Performance Comparison of Acoustic Equalizers using Adaptive Algorithms in Shallow Water Condition 원문보기

한국정보통신학회논문지 = Journal of the Korea Institute of Information and Communication Engineering, v.22 no.2, 2018년, pp.253 - 260  

췌명 (Dept. of Information and Communications Engineering, Pukyong National University) ,  박규칠 (Dept. of Information and Communications Engineering, Pukyong National University)

초록
AI-Helper 아이콘AI-Helper

천해 환경에서의 수중 음향 통신 채널은 전형적으로 시변 다중 경로 페이딩 채널 특성을 나타낸다. 이러한 채널 전송을 통해 수신된 신호는 시간 지연 및 진폭의 중첩에 의해 심볼 간 간섭을 유발한다. 이를 보완하기 위해 여러 기술이 사용되었으며, 그 중 하나가 음향 등화기이다. 본 연구에서는 심볼 간 간섭을 보상하기 위해 feed-forward equalizer (FFE), decision direct equalizer (DDE), decision feedback equalizer (DFE) 및 DFE와 결합된 DDE의 4 종류의 등화기와 등화기의 계수를 조정하기 위해 normalized least mean square (NLMS) 알고리즘과 recursive least square (RLS) 알고리즘의 2 종류의 알고리즘을 적용하였다. 그 결과 비선형 등화기에서는 신호 대 잡음비 6 dB 이상에서 상당한 성능 향상을 발견할 수 있었으며, DFE와 DDE의 조합은 어떤 경우에도 최고의 성능을 발휘하였다.

Abstract AI-Helper 아이콘AI-Helper

The acoustic communication channel in shallow underwater is typically shown as time-varying multipath fading channel characteristics. The received signal through channel transmission cause inter-symbol interference (ISI) owing to multiple components of different time delay and amplitude. To compensa...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In order to improve the communication quality and reduce the ISI,the equalization technique is usually used at the receiving end [4, 5]. In this study, we tried to transmit the data signal using continuous transmission method with binary phase shift keying (BPSK) modulation and demodulation system in shallow water. And four acoustic equalizers are adopted that are the feed forward equalizer (FFE), the decision directed equalizer (DDE),the decision feedback equalizer (DFE) and combination of the DFE and the DDE with two adaptive algorithm with normalized least mean square (NLMS) algorithm and recursive least square (RLS) algorithm [6, 7].
  • Next, we carried out the simulation with depth variations in the middle of transmitting signal to investigate the performance of environmental changes. The first environment is as follows.
  • The DFE belongs to nonlinear equalizer and the coefficients of the equalizer are adjusted by feedback. The purpose is to reduce the loss of the data transmission for multipath channel and compare the performance of the four kinds of equalizers with two adaptive algorithms. As the same time, we also compared the convergence speed and stability of the two adaptive algorithms.
  • We evaluated two types of adaptive algorithm that are the NLMS algorithm and the RLS algorithm, and two kinds of experiment method was adopted, one is training and transmission at water depths are 14.7 m,15.7 m and 16.7 m, respectively and transmission distance is 100 m and 400 m. The other is transmission data is divided into data segments for transmission, it means that training at 15.

이론/모형

  • For measuring of the channel’scharacteristics and symbol timing alignment on the data transmission, a linear frequency modulation (LFM) and a pseudorandom noise (PN) code were used [12].
본문요약 정보가 도움이 되었나요?

참고문헌 (18)

  1. T. C. Yang, "Properties of underwater acoustic communication channels in shallow water," Journal of the Acoustical Society of America, vol. 131, no. 1, pp. 129-145, Jan. 2012. 

  2. Y. H. Yoon and A. Zielinski, "Simulation of the equalizer for shallow water acoustic communication," in Proceeding of OCEANS 1995, San Diego, CA, pp. 1197-1203, Oct. 1995. 

  3. W.-B. Yang and T. C. Yang, "High-frequency channel characterization for M-ary frequency-shift-keying underwater acoustic communications," Journal of the Acoustical Society of America, vol. 120, no. 5, pp. 2615-2626, Nov. 2006. 

  4. K.-C. Park and J. R. Yoon, "Performance Evaluation of the Complex-Coefficient Adaptive Equalizer Using the Hilbert Transform," Journal of information and communication convergence engineering, vol. 14, pp. 78-83, Jun. 2016. 

  5. J. R. Yoon, K.-C. Park, and J. Park, "Performance comparison between packet and continuous data transmission using two adaptive equalizers in shallow water," Japanese Journal of Applied Physics, vol. 54, article ID: 07HG05, May, 2015. 

  6. H.-J. Kim, T.-G. Gwun, Y.-I. Joo, and D.-H. Seo, "A study on implementation of background subtraction algorithm using LMS algorithm and performance comparative analysis," Journal of the Korean Society of Marine Engineering, vol. 39, pp. 94-98, Jan. 2015. 

  7. E. Camelia, P. Constantin, A. D. Robert, C. Silviu, and B. Jacob , "An RLS algorithm for the identification of bilinear forms," 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), pp. 292-295, Oct. 2017. 

  8. J.-H. Son and K.-M. Kim,"Tap-length Optimization of Decision Feedback Equalizer Using Genetic Algorithm," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, pp. 1765-1772, Aug. 2015. 

  9. T.-H. Kim and J.-W. Jung, "Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications," Journal of the Korea Institute of Information and Communication Engineering, vol. 18, pp. 1042-1050, May, 2014. 

  10. L. Rugini, P. Banelli, and G. Leus, "Simple equalization of time-varying channels for OFDM," IEEE Journal of Commun. Lett. Vol. 9, pp. 619-621, July, 2005. 

  11. J.-S. Lim and Y.-G. Pyeon, "Low Complexity Gauss Newton Variable Forgetting Factor RLS for Time Varying System Estimation," Journal of Korea Information and Communications Society, vol. 41, pp. 1141-1145, Sep. 2016. 

  12. K, Kim, S. Oh, K. Yun, D.-H. Choi, "Travel Distance Estimation Method based on TSSI(Transmitted Signal Strength Indication) in Wireless Communication using LED," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 7, pp. 895-902, May, 2017. 

  13. Y.-H. Song, H.-W. Park, and M.-J. Bae, "A Study on SNR Estimation of Continuous Speech Signal," The Journal of the Acoustical Society of Korea, vol. 28, pp. 1-9, Apr. 2009. 

  14. S.-A. Kim and H.-G. Ryu, "Adaptive Modulation System Using SNR Estimation Method Based on Correlation of Decision Feedback Signal," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 22, pp. 282-291, Mar. 2011. 

  15. C.-W. Seo, G.-S. Yoon, S. Portugal, and I.-T. Hwang, "New SNR Estimation Algorithm using Preamble and Performance Analysis," Journal of the Institute of Electronics and Information Engineers, vol. 48, pp. 6-12, Mar. 2011. 

  16. K.-N. Seo, S.-W. Choi, and C.-H. Kim, "A SNR Estimation Algorithm for Digital Satellite Transponder," The Journal of Korean Institute of Communications and Information Sciences, vol. 35, pp. 729-734, Sep. 2010. 

  17. H.-W. Park and M.-J. Bae, "IMBE Model Based SNR Estimation of Continuous Speech Signals," The Journal of the Acoustical Society of Korea, vol. 29, pp. 148-153, Feb. 2010. 

  18. H. Kim, J. Seo, J. Kim, S. Kim, and J. Chung, "Equalizer Mode Selection Method for Improving Bit Error Performance of Underwater Acoustic Communication Systems," The Journal of the Acoustical Society of Korea, vol. 31, pp. 1-10, Jan. 2012. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로