$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Phylogenetic relationships of Coreanomecon (Papaveraceae: Papaveroideae), an endemic genus in Korea, using DNA sequences 원문보기

식물분류학회지 = Korean journal of plant taxonomy, v.48 no.4, 2018년, pp.289 - 300  

YUN, Narae (Department of Biology, Daejeon University) ,  OH, Sang-Hun (Department of Biology, Daejeon University)

Abstract AI-Helper 아이콘AI-Helper

Coreanomecon is a monotypic and endemic genus in Korea, distributed mainly in the southern regions. Coreanomecon is morphologically similar to Hylomecon by producing red latex, easily distinguished from Chelidonium, which produces yellow latex. Coreanomecon were merged into Hylomecon or Chelidonium ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • We are grateful to Jung Won Youm, Yun Gyeong Choi, Dong-Hyuk Lee, and Chae Eun Lim for their help at various stages of this study. We thank the curator and other herbarium staff at KB who generously allowed us to obtain plant samples, as well as two anonymous reviewers for their critical reviews of the manuscript. This work was supported by a research grant, NIBR-201714101, from the National Institute of Biological Resources of Korea.

가설 설정

  • The resultant MP trees with the constrained relationships were evaluated with the original MP trees without the constraint. The objective of the constraint analysis was to test whether each data set does not reject the hypothesis that Coreanomecon is congeneric to Hylomecon or Chelidonium. For the SH test, 10,000 bootstrap replicates were re-sampled using the re-estimated log likelihood (RELL) method.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Carolan, J. C., I. L. I. Hook, M. W. Chase, J. W. Kadereit and T. R. Hodkinson. 2006. Phylogenetics of Papaver and related genera based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Annals of Botany 98: 141-155. 

  2. CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106: 12794-12797. 

  3. Chung, G. Y., K. S. Chang, J.-M. Chung, H. J. Choi, W.-K. Paik and J.-O. Hyun 2017. A checklist of endemic plants on the Korean Peninsula. Korean Journal of Plant Taxonomy 47: 264-288. 

  4. Cronquist, A. 1988. The Evolution and Classification of Flowering Plants. The New York Botanical Garden, Bronx, NY, 555 pp. 

  5. Cuenoud, P., V. Savolainen, L. W. Chatrou, M. P. Powell, R. J. Grayer and M. W. Chase. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132-144. 

  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. 

  7. Hannan, G. L. and C. Clark. 2011. Papaveraceae. In The Jepson Manual Higher Plants of California II, second edition. Baldwin, B. G., S. Boyd, B. J. Ertter, D. J. Keil, R. W. Patterson, T. J. Rosatti, and D. Wilken (eds.), University of California Press, Berkeley, CA. Pp. 978-986. 

  8. Hebert, P. D. N., A. Cywinska, S. L. Ball and J. R. deWaard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313-321. 

  9. Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812-14817. 

  10. Hoot, S. B., J. W. Kadereit, F. R. Blattner, K. B. Jork, A. E. Schwarzbach and P. R. Crane. 1997. Data congruence and phylogeny of the Papaveraceae s. l. based on four data sets: atpB and rbcL sequences, trnK restriction sites, and morphological characters. Systematic Botany 22: 575-590. 

  11. Hoot, S. B., K. M. Wefferling and J. A. Wulff. 2015. Phylogeny and character evolution of Papaveraceae s. l. (Ranunculales). Systematic Botany 40: 474-488. 

  12. Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. 

  13. Kadereit, J. W. 1988. Sectional affinities and geographical distribution in the genus Papaver L. (Papaveraceae). Beitrarage zur Biologie der Pflanzen 63: 139-156. 

  14. Kadereit, J. W. 1993. A revision of Papaver sect. Meconidium. Edinburgh Journal of Botany 50: 125-148. 

  15. Kim, H. M., S.-H. Oh, G, S. Bhandari, C.-S. Kim and C.-W. Park. 2014. DNA barcoding of Orchidaceae in Korea. Molecular Ecology Resources 14: 499-507. 

  16. Kim, M. 2007. Papaveraceae. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul. Pp. 216-220. 

  17. Kim, M., S.-Y. Kwon and K.-R. Park. 1999. Reexamination the generic status of the Korean endemic Coreanomecon within subfamily Chelidonioideae (Papaveraceae). Korean Journal of Plant Taxonomy 29: 295-305. 

  18. Kress, W. J. and D. L. Erickson. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2: e508. 

  19. Kress, W. J., K. J. Wurdack, E. A. Zimmer, L. A. Weigt and D. H. Janzen. 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369-8374. 

  20. Lahaye, R, M. van der Bank, D. Bogarin, J. Warner, F. Pupulin, G. Gigot, O. Maurin, S. Duthoit, T. G. Barraclough and V. Savolainen. 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America 105: 2923-2928. 

  21. Lee, E. J., I. K. Hwang, N. Y. Km, K. L. Lee, M. S. Han, Y. H. Lee, M. Y. Kim and M. S. Yang. 2010. An assessment of the utility of universal and specific genetic markers for opium poppy identification. Journal of Forensic Sciences 55: 1202-1208. 

  22. Lee, S. and M. Y. Kim. 1984. A palynotaxonomic study of Coreanomecon hylomecoides Nakai (Papaveraceae) and its closely related species. Korean Journal of Plant Taxonomy 14: 181-186. 

  23. Lee, Y. N. 1973. Taxonomic study on genus Hylomecon. Journal of Korean Research Institute of Better Living 11: 127-136. (in Korean) 

  24. Lee, T. B. 1980. Illustrated Flora of Korea. Hyangmunsa, Seoul, 990 pp. 

  25. Mabberley, D. J. 2008. Mabberley's Plant-Book: A Portable Dictionary of the Vascular Plants. 2nd ed. Cambridge University Press, Cambridge, NY, 858 pp. 

  26. Nakai, T. 1935. Coreanomecon hylomecoides Nakai. Journal of Japanese Botany 11: 151-152. 

  27. Ohwi, J. 1965. Flora of Japan. Smithsonian Institution, Washington, D.C., 1067 pp. 

  28. Park, M. K. 1974. Keys to the Herbaceous Plants in Korea. Chungeumsa, Seoul, 593 pp. 

  29. Posada, D. and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford) 14: 817-818. 

  30. Randel U. 1974. Beitrage zur Kenntnis der Sippenstruktuir der Gattung Papaver L. Sectio Scapiflora Reihenb. Im vergleich mit P. alpinum L. (Papaveraceae). Feddes Repert 86: 19-37. 

  31. Rieseberg, L. H. and N. C. Ellstrand. 1993. What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences 12: 213-241. 

  32. Rieseberg, L. H., S. J. Baird and K. A. Gardner. 2000. Hybridization, introgression, and linkage evolution. Plant Molecular Biology 42: 205-224. 

  33. Sang, T., D. J. Crawford and T. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136. 

  34. Simpson, M. G. 2010. Plant Systematics. 2nd ed. Elsevier, Amsterdam, 740 pp. 

  35. Soltis, P. S., D. E. Soltis and C. J. Smiley. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Sciences of the United States of America 89: 449-451. 

  36. Son, S.-W., J.-M. Chung, J.-K. Shin, B.-C. Lee, K.-W. Park and S. J. Park. 2012. Distribution, vegetation characteristics and assessment of the conservation status of a rare and endemic plant, Coreanomecon hylomeconoides Nakai. Korean Journal of Plant Taxonomy 42: 116-125. 

  37. Swofford, D. L. 2002. PAUP* Phylogenetic analysis using parsimony (* and other methods), version 4.0. Sinauer Associates, Sunderland, MA. 

  38. Takhtajan, A. 1997. Diversity and Classification of Flowering Plants. Columbia University Press, New York, 643 pp. 

  39. The Angiosperm Phylogeny Group. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399-436. 

  40. The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105-121. 

  41. The Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181: 1-20. 

  42. Thorne, R. F. 1992. Classification and geography of the flowering plants. Botanical Review 58: 225-348. 

  43. Tripathi, A. M., A. Tyagi, A. Kumar, A. Singh, S. Singh, L. B. Chaudhary and S. Roy. 2013. The internal transcribed spacer (ITS) region and trnH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS ONE 8: e57934. 

  44. Wang, W., A.-M. Lu, Y. Ren, M. E. Endress and Z.-D. Chen. 2009. Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics 11: 81-110. 

  45. Xiang, X.-G., H. Hu, W. Wang and X.-H. Jin. 2011. DNA barcoding of the recently evolved genus Holcoglossum (Orchidaceae: Aeridinae): a test of DNA barcode candidates. Molecular Ecology Resources 11: 1012-1021. 

  46. Youm, J. W., S.-W. Han, S. W. Seo, C. U. Lim and S.-H. Oh. 2016. DNA barcoding of Schisandraceae in Korea. Korean Journal of Plant Taxonomy 46: 273-282. 

  47. Zhang, M., Z. Su, M. Liden and C. Grey-Wilson. 2008. Papaveraceae. In Flora of China. Vol. 7. Menispermaceae through Capparaceae. Wu, Z. Y., P. H. Raven and D. Y. Hong (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 261-293. 

  48. Zhang, Q., Y. Liu and Sodmergen. 2003. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant and Cell Physiology 44: 941-951. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로