$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Radiation damage in helium ion-irradiated reduced activation ferritic/martensitic steel 원문보기 논문타임라인

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.50 no.1, 2018년, pp.132 - 139  

Xia, L.D. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ,  Liu, W.B. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ,  Liu, H.P. (Institute of Modern Physics, Chinese Academy of Sciences) ,  Zhang, J.H. (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ,  Chen, H. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ,  Yang, Z.G. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ,  Zhang, C. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University)

Abstract AI-Helper 아이콘AI-Helper

Nanocrystalline reduced activation ferritic/martensitic (RAFM) steel samples were prepared using surface mechanical attrition treatment (SMAT). Un-SMATed and SMATed reduced activation ferritic/martensitic samples were irradiated by helium ions at $200^{\circ}C$ and $350^{\circ}C$

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Heat treatment included austenitizing at 1253 K for 45 minutes, followed by water quenching and then tempering at 1033 K for 90 minutes. SMAT, an effective approach to prepare bulk NC materials, was used in this investigation. The plate sample (Φ50.
  • We systematically analyzed bubble morphologies in helium ioneirradiated NC RAFM steel and coarse-grained RAFM steel to investigate the effects of GBs and temperature on the formation of bubbles during irradiation. The experimental results were as follows:
  • X-ray diffraction (XRD) analysis of the surface layer was carried out using a Rigaku SmartLab X-ray diffractometer with Cu Ka radiation. A step length of 0.

대상 데이터

  • The authors are grateful to the National Laboratory of Heavy-ion Accelerators in Lanzhou for providing the experiment platform. The authors are indebted to Dr Z.
  • The material used in our investigation was RAFM steel with the following chemical composition (in wt%): 0.10% C, 1.50% W, 0.29% V, 0.55% Mn, 0.09% Ta, 8.60% Cr, and balanced Fe. Heat treatment included austenitizing at 1253 K for 45 minutes, followed by water quenching and then tempering at 1033 K for 90 minutes.
  • The plate sample (Φ50.0 4.0 mm in size) of the tempered steel was submitted to SMAT, with the setup illustrated in Lu's work [21].
본문요약 정보가 도움이 되었나요?

참고문헌 (29)

  1. S.J. Zinkle, P.J. Maziasz, R.E. Stoller, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel, J. Nucl. Mater. 206 (1993) 266-286. 

  2. C. Xu, L. Zhang, W. Qian, J. Mei, X. Liu, The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation, Nucl. Eng. Technol. 48 (2016) 758-764. 

  3. W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at $550^{\circ}C$ , Nucl. Eng. Technol. 48 (2016) 518-524. 

  4. P.B. Zhang, C. Zhang, R.H. Li, J.J. Zhao, He-induced vacancy formation in bcc Fe solid from first-principles simulation, J. Nucl. Mater. 444 (2014) 147-152. 

  5. H. Ullmaier, The influence of helium on the bulk properties of fusion reactor structural materials, Nucl. Fusion 24 (1984) 1039-1083. 

  6. S.J. Zinkle, B.N. Singh, Analysis of displacement damage and defect production under cascade damage conditions, J. Nucl. Mater. 199 (1992) 173-191. 

  7. C.C. Wang, C. Zhang, Z.G. Yang, J.J. Zhao, Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel, Nucl. Eng. Technol. 49 (2017) 569-575. 

  8. R.H. Li, P.B. Zhang, X.J. Li, J.H. Ding, Y.Y. Wang, J.J. Zhao, L. Vitos, Effects of Cr and W additions on the stability and migration of He in bcc Fe: a firstprinciples study, Comput. Mater. Sci. 123 (2016) 85-92. 

  9. N. Hashimoto, T.S. Byun, K. Farrell, S.J. Zinkle, Deformation microstructure of neutron-irradiated pure polycrystalline metals, J. Nucl. Mater. 1309 (2004) 947-952. 

  10. F.A. Garner, M.B. Toloczko, B.H. Sencer, Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure, J. Nucl. Mater. 276 (2000) 123-142. 

  11. W.B. Liu, Y.Z. Ji, P.K. Tan, C. Zhang, C.H. He, Z.G. Yang, Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel, J. Nucl. Mater. 479 (2016) 1303-1330. 

  12. H. Trinkaus, B.N. Singh, Helium accumulation in metals during irradiation e where do we stand? J. Nucl. Mater. 1303 (2003) 229-242. 

  13. J. Henry, M.H. Mathon, P. Jung, Microstructural analysis of 9% Cr martensitic steels containing 0.5 at.% helium, J. Nucl. Mater. 318 (2003) 249-259. 

  14. Z. Jiao, N. Ham, G.S. Was, Microstructure of helium-implanted and protonirradiated T91 ferritic/martensitic steel, J. Nucl. Mater. 367 (2007) 440-445. 

  15. Y. Sekio, S. Yamashita, N. Sakaguchi, H. Takahashi, Void denuded zone formation for Fee15Cre15Ni steel and PNC316 stainless steel under neutron and electron irradiations, J. Nucl. Mater. 458 (2015) 355-360. 

  16. B. Mazumder, M.E. Bannister, F.W. Meyer, M.K. Miller, C.M. Parish, P.D. Edmondson, Helium trapping in carbide precipitates in a tempered F82H ferriticemartensitic steel, Nucl. Mater. Energy 1 (2015) 8-12. 

  17. B.N. Singh, Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel, Philos. Mag. 29 (1974) 25-42. 

  18. B.N. Singh, A. Foreman, Calculated grain size-dependent vacancy supersaturation and its effect on void formation, Philos. Mag. 29 (1974) 847-857. 

  19. R. Bullough, M.R. Hayns, M.H. Wood, Sink strengths for thin film surfaces and grain boundaries, J. Nucl. Mater. 90 (1980) 44-59. 

  20. K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, X. Zhang, Radiation damage in helium ion irradiated nanocrystalline Fe, J. Nucl. Mater. 425 (2012) 140-146. 

  21. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater. 50 (2002) 4603-4616. 

  22. R.E. Stoller, M.B. Toloczko, et al., On the use of SRIM for computing radiation damage exposure, Nucl. Instr. Meth. Phys. Res., Sect. B. 310 (2013) 75-80. 

  23. Y. Matsukawa, S.J. Zinkle, Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations, J. Nucl. Mater. 1309 (2004) 919-923. 

  24. M.J. Caturla, N. Soneda, E. Alonso, B.D. Wirth, T.D. De La Rubia, J.M. Perlado, Comparative study of radiation damage accumulation in Cu and Fe, J. Nucl. Mater. 276 (2000) 13-21. 

  25. E.G. Fu, A. Misra, H. Wang, L. Shao, X. Zhang, Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers, J. Nucl. Mater. 407 (2010) 178-188. 

  26. H. Trinkaus, Modeling of helium effects in metals: high temperature embrittlement, J. Nucl. Mater. 133 (1985) 105-112. 

  27. B.N. Singh, T. Leffers, M. Victoria, W.V. Green, Relation between mechanicalproperties and microstructure under fusion irradiation conditions, Rad. Eff. 101 (1987) 91-107. 

  28. C. Dethloff, E. Gaganidze, V.V. Svetukhin, J. Aktaa, Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels, J. Nucl. Mater. 426 (2012) 287-297. 

  29. J.H. Evans, An interbubble fracture mechanism of blister formation on heliumirradiated metals, J. Nucl. Mater 68 (1977) 129-140. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로