$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국연안 고주파 해양레이더망 운영과 활용 개관
An Overview of Operations and Applications of HF Ocean Radar Networks in the Korean Coast 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.34 no.2 pt.2, 2018년, pp.351 - 375  

김호균 (국립해양조사원) ,  김정훈 ((주)에스이티시스템) ,  손영태 (서울대학교 해양연구소) ,  이상호 (군산대학교 대학원 해양학과)

초록
AI-Helper 아이콘AI-Helper

본 논문은 고주파 해양레이더의 특징과 한국 연안해역에서 해양레이더망으로 생산된 주요 결과와 정보를 독자들에게 소개하고, 현존하는 레이더의 운영현황 목록을 만들며, 레이더 운영기술과 해류자료 활용에 관한 정보를 공유하고자 한다. 지난 20여년 동안 국내의 해양레이더 수는 현저히 증가하여 현재 44기 이상이 연안에 배치되어 있다. 대부분의 레이더는 주로 레이더 운영기관의 임무에 따라 해양안전, 조류예보 그리고 해류역학 이해를 목적으로 운영하고 있다. 논문 저자들은 본 논문이 해양레이더의 활용성을 조류와 해류역학 이해의 수준을 넘어서 어업, 해양레저활동, 해양자원 관리, 유류유출 대응, 연안환경 복원, 조난자 수색구조, 선박탐지 등으로 확장하는데 도움이 되기를 바란다. 이와 더불어 본 논문이 국가 해양레이더망 체계를 설립하여 해양영토 감시활동에 기여하고, 신호처리 기술을 포함한 국내 해양레이더 시스템을 개발하는데도 기여하기를 바란다.

Abstract AI-Helper 아이콘AI-Helper

This paper aims to i) introduce the characteristics of HF ocean radar and the major results and information produced by the radar networks in the Korean coasts to the readers, ii) make an up-to-date inventory of the existing radar systems, and iii) share the information related to the radar operatin...

주제어

표/그림 (18)

질의응답

핵심어 질문 논문에서 추출한 답변
해양레이더의 측정원리는? 해양레이더는 해안가에서 고주파대역(HF/VHF) 전자기파를 바다를 향해 송출하고 해면에서 반사되어오는 신호를 분석하여 광역에 걸친 표층해수의 유동속도를 고밀도로 동시에 측정한다. 시간적으로는 장기간에 걸쳐 시간 간격으로 연속하여 측정하는 원격탐사 장비 이고, 풍랑과 해상풍 정보를 생산하며 선박탐지와 추적도 가능하다(Barrick, 1978; Paduan and Graber, 1997; Paduan and Washburn, 2013; Maresca et al.
해양레이더의 장단점은 무엇인가? 해양레이더는 공간적 분해능이 낮아 구체적인 선박 종류, 형태, 크기 등을 식별하기는 어렵고 선박의 크기에 따라 탐지거리의 한계를 갖지만 1,000 ton 정도 대형 선박의 경우 수평선 넘어 120 km 이상 먼 거리까지 선박의 존재를 수 10분 단위까지 연속적으로 탐색할 수 있는 유일한 장비이다. 현재 해양레이더의 해수유동 관측면적은 EEZ를 포함하는 해양영토 면적의 10% 미만 이다.
해양레이더가 수직으로 편광된 전파신호를 사용하는 이유는? 해양레이더는 수직으로 편광된 전파신호를 사용하는데(Barrick, 1971), 이는 해수가 고주파대역(HF/VHF) 전파에 아주 좋은 전기적 도체이기 때문이다. 수직 편광된 전자기파는 전기장 벡터의 방향이 해면을 향하기 때문에 ground mode에서 해수면을 따라 수평선 넘어(over-the-horizon) 먼 거리까지 전파할 수 있다(Crombie,1972). 따라서 수직 편광된 고주파 전파를 송출하는 해양레이더는 넓은 지역의 표층 흐름속도를 동시에 원격으로 측정할 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (83)

  1. Abascal, A. J., S. Castanedo, V. Fernandez, and R. Medina, 2012. Backtracking Drifting Objects using Surface Currents from High-Frequency (HF) Radar, Ocean Dynamics, 58: 1-18. 

  2. Abascal, A.J., J. Sanchez, H. Chiri, M.I. Ferrer, M. Cardenas, A. Gallego, S. Castanedo, R. Medina, A. Alonso-Martirena, B. Berx, W.R. Turrell, and S.L. Hughes, 2017. Operational Oil Spill Trajectory Modelling Using HF Radar Currents: A Northwest European Continental Shelf Case Study, Marine Pollution Bulletin, 119(1): 336-350. 

  3. Barrick, D.E., 1971. Theory of HF and VHF propagation across the rough sea: 2. Application to HF and VHF propagation above the sea, Radio Science, 6: 527-533. 

  4. Barrick, D.E., 1972. First-order theory and analysis of MH/NF/VHF scatter from the sea, IEEE Transactions on Antennas and Propagation, 28: 1-11. 

  5. Barrick, D. E., M.W. Evans, and B.L Weber, 1977. Ocean surface currents mapped by radar, Science, 198: 138-144. 

  6. Barrick, D.E., 1977. Extraction of wave parameters from measured HF radar sea-echo Doppler spectra, Radio Science, 12: 415-424. 

  7. Barrick, D.E., 1978. HF radio oceanography - a review, Boundary-Layer Meteorology, 13: 23-43. 

  8. Barrick, D.E. and M.W. Evans, 1979. HF coastal current mapping radar system, U.S. Patent No. 4,172,255. 

  9. Barrick, D.E. and B. J. Lipa, 1986. Correcting for distorted antenna patterns in CODAR ocean surface measurements, IEEE Journal of Oceanic Engineering, 11(2): 304-309. 

  10. Barrick, D.E. and B. J. Lipa, 1999. Radar angle determination with MUSIC direction finding, U.S. Patent No. 5,990,834. 23. 

  11. Barrick, D. E. and P. M. Lilleboe, 2011. Combined transmit/receive single-post antenna for HF/VHF radar, U.S. Patent No. 8,031,109. 

  12. Barrick, D., V. Fernandez, M. I. Ferrer, C. Whelan, and O. Breivik, 2012. A Short-term Predictive System for Surface Currents from a Rapidly Deployed Coastal HF Radar Network, Ocean Dynamics - special issue: Advances in search and rescue at sea, 62(5): 725-740. 

  13. Bellomo, L., A. Griffa, S. Cosoli, P. Falco, R. Gerin, I. Iermano, A. Kalampokis, Z. Kokkini, A. Lana, M.G. Magaldi, I. Mamoutos, C. Mantovani, J. Marmain, E.Potiris, J.M. Sayol, Y. Barbin, M. Berta, M. Borghini, A. Bussani, L. Corgnati, Q. Dagneaux, J. Gaggelli, P. Guterman, D. Mallarino, A. Mazzoldi, A. Molcard, A. Orfila, P.-M. Poulain, C. Quentin, J. Tintore, M. Uttieri, A. Vetrano, E. Zambianchi, and V. Zervakis, 2015. Toward an integrated HF radar network in the Mediterranean Sea to improve search and rescue and oil spill response: the TOSCA project experience, Journal of Operational Oceanography, 8(2): 95-107. 

  14. Cardenas, M., A.J. Abascal, S. Castanedo, S. Chiri, M.I. Ferrer, J. Sanchez, R. Medina, W. R. Turrell, S. Hughes, A. Gallego, and B. Berx, 2015. Spill Trajectory Modeling Based on HF Radar Currents in the North Sea: Validation with Drifter Buoys, Proc. of the Thirty Eighth AMOP Technical Seminar, Vancouver, BC, Canada, Jun. 2-Jun. 4, pp.123-142. 

  15. Chang, K.-I., W. J. Teague, S. J. Lyu, H. T. Perkins, D.-K. Lee, D. R. Watts, Y.-B. Kim, D. A. Mitchell, C. M. Lee, and K. Kim, 2004. Circulation and currents in the southwestern East/Japan Sea: overview and review, Progress in Oceanography, 61(2): 105-156. 

  16. Cho, Y.-K. and K. Kim, 1994. Two modes of salinityminimum layer water in the Ulleung Basin, La Mer, 32: 271-278. 

  17. Collar, P.G., 1993. A review of observational technoquies and instruments for current measurements from the open sea, Report No. 304, Institute of Oceanographic Sciences, Deacon Lab. Brook road, Wormley, Godalming, Surrey, UK. 

  18. Crombie, D.D., 1955. Doppler spectrum of sea echo at 13.56Mc/s, Nature, 175(4459): 681-682. 

  19. Crombie, D.D., 1972. Resonant backscatter from the sea and its application to physical oceanography, Proc. of IEEE Oceans '72 conference, Newport, RI, USA, Sep. 13-Sep. 15, pp.172-179. 

  20. de Paolo, T. and E.J. Terrill, 2007. Skill assessment of resolving ocean surface current structure using compact-antenna-style HF radar and the MUSIC direction-finding algorithm, Journal of Atmospheric and Oceanic Technology, 24(7): 1277-1300. 

  21. Dzvonkovskaya, A., K.-W. Gurgel, H. Rohling, and T. Schlick, 2008. Low power high frequency surface wave radar application for ship detection and tracking, Proc. of International Conference on Radar, Adelaide, SA, Austrailia, Sep. 2-Sep. 5, pp. 627-632. 

  22. Fredj, E., H. Roarty, J. Kohut, M. Smith, and S. Glenn, 2016. Gap Filling of the Coastal Ocean Surface Currents from HFR Data: Application to the Mid- Atlantic Bight HFR Network, Journal of Atmospheric and Oceanic Technology, 33(6): 1097-1111. 

  23. Fujii, S., M.L. Heron, K. Kim, J.-W. Lai, S.-H. Lee, Xiangbai Wu, Xiongbin Wu, L. R. Wyatt, and W.-C. Yang, 2013. An Overview of Developments and Applications of Oceanographic Radar Networks in Asia and Oceania Countries, Ocean Science Journal, 48(1): 69-97. 

  24. Griffa, A., 1996. Applications of stochastic particle models to oceanographic problems, In: Adler R.J., Muller P., Rozovskii B.L. (eds), Stochastic Modelling in Physical Oceanography, pp.113-140, Birkhauser, Boston, MA, USA. 

  25. Gurgel, K-W., G. Antonischki, H.H. Essen, and T. Schlick, 1999. Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing, , 37(3): 219-234. 

  26. Gurgel, K.-W., A. Dzvonkovskaya, T. Pohlmann, T. Schlick, and E. Gill, 2011. Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar, Ocean Dynamics, 61(10): 1495-1507. 

  27. Harlan, J., E. Terrill, L. Hazard, C. Keen, D. Barrick, C. Whelan, S. Howden, and J. Kohut, 2010. The Integrated Ocean Observing System High-Frequency Radar Network: Status and Local, Regional, and National Applications, Marine Technology Society Journal, 44: 122-132. 

  28. Heron, M. L. and A. Prytz, 2001. Wave height and wind direction from the HF coastal ocean surface radar, Canadian Journal of Remote Sensing, 28(3): 385-393. 

  29. Huang, W., E. Gill, X. Wu, and L. Li, 2012. Measurement of Sea Surface Wind Direction Using Bistatic High-Frequency Radar, IEEE Transactions on Geoscience and Remote Sensing, 50(10): 4117-4122. 

  30. Hwang, J.-A., S.-H. Lee, B.-J. Choi, and C.-S. Kim, 2010. Application of objective mapping to surface currents observed by HF radar off the Keum River estuary, Journal of the Korean Society of Oceanography, [The Sea], 16(1): 14-26 (in Korean with English abstract). 

  31. Hyun, J. H., D. Kim, C.-W. Shin, J.-H. Noh, E.-J. Yang, J.-S. Mok, S.-H. Kim, H.-C. Kim, and S. Yoo, 2009. Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung Basin, East Sea, Aquatic Microbiological Ecology, 54: 45-54. 

  32. Ichiye, T. and K. Takano, 1988. Mesoscale eddies in the Japan Sea, La Mer, 26: 69-79. 

  33. IOOS, 2009. A plane to meet the nation's needs for surface current mapping, NOAA, p. 63. 

  34. ITU-R, 2012. Final Acts WRC-2012. https://www.itu.int/, Aceessed on Dec. 8, 2016. 

  35. Joseph, A., 2014. Measuring ocean currents: tools, technologies, and data, Elsevier, San Diego, CA, USA. 

  36. Kim, C.S., S.H. Lee, Y.T. Son, H.K. Kwon, K.H. Lee, Y.B. Kim, and O.J. Jeong, 2006. Changes of surface M2 currents as observed by HF radar before and after Saemangeum fourth tidal dyke closing, Journal of the Korean Society of Oceanography, [The Sea], 11(2): 37-48 (in Korean with English abstract). 

  37. Kim, C.S., S.H. Lee, Y.T. Son, H.K. Kwon, K.H. Lee, and B.J. Choi, 2008a.Variations in subtidal surface currents observed with HF radar in the coastal waters off the Saemangeum areas, Journal of the Korean Society of Oceanography, [The Sea], 13(1): 56-66 (in Korean with English abstract). 

  38. Kim, M.J., 2017. Chang of surface current and coastal circulation due to a seawall construction for Saemangeum new-port development, MS Thesis, Kunsan National University, Korea (in Korean with English abstract). 

  39. Kim, S.Y., E.J. Terrill, and B.D. Cornuelle, 2007. Objectively mapping HF radar-derived surface current data using measured and idealized data covariance matrices, Journal of Geophysical Research, 112(C6). 

  40. Kim, S.Y., E.J. Terrill, and B.D. Cornuelle, 2008b. Mapping surface currents from HF radar radial velocity measurements using optimal interpolation, Journal of Geophysical Research, 113(C10). 

  41. Kim, S.Y., B.D. Cornuelle, and E.J. Terill, 2009. Anisotropic response of surface currents to the wind in a coastal region, Journal of Physical Oceanography, 39(6): 1512-1533. 

  42. Kirincich, A., 2017. Improved detection of the firstorder region for direction-finding HF radars using image processing techniques, Journal of Atmospheric and Oceanic Technology, 34(8): 1679-1691. 

  43. Kjelaas, A. G. and C. Whelan, 2011. Rapidly Deployable SeaSonde for Modeling Oil Spill Response, Sea Technology, 52(10): 10-13. 

  44. Kohut, J.T. and S.M. Glenn, 2003. Improving HF Radar Surface Current Measurements with Measured Antenna Beam Patterns, Journal of Atmospheric and Oceanic technology, 20: 1303-1316. 

  45. Korea Hydrographic and Oceanographic Agency (KHOA), 2015. Production activity of schematic map of the ocean currents in the adjacent seas around Korea, NO. 11-1192136-000176-01, p. 59 (in Korean). 

  46. Kwon, K.M., B.-J. Choi, S.-H. Lee, Y.-K. Cho, and C.J. Jang, 2011. Coastal Current Along the Eastern Boundary of the Yellow Sea in Summer: Numerical Simulations, Journal of Korean Society of Oceanography, [The Sea], 16(4): 155-168 (in Korean with English abstract). 

  47. Lee, S.-H. and R.C. Beardsley, 1999. Influence of stratification on residual tidal currents in the Yellow Sea, Journal of Geophysical Research, 104: 15679-15701. 

  48. Lee, S.-H., H.Y. Choi, Y.T. Son, H.K. Kwon, Y.K. Kim, and J.S. Yang, 2003. Low-salinity water and circulation in summer around Saemangeum area in the west coast of Korea, Journal of the Korean Society of Oceanography, [The Sea], 8(2): 135-150 (in Korean with English abstract). 

  49. Lee, S.-H., H.B. Moon, H.Y. Baek, C.S. Kim, Y.T. Son, H.K. Kwon, and B.-J. Choi, 2008. On the accuracy of current measurement by HF radar in the coastal sea off the Keum River estuary, Journal of the Korean Society of Oceanography, [The Sea], 13(1): 42-55 (in Korean with English abstract). 

  50. Lee, S.-H. and M.L. Heron, 2013. Development of Oceanographic Radar Networks, Data Management and Applications in Asia and Oceania Countries, Ocean Science Journal, 48(1): 67-68. 

  51. Lee, S.-H, C.Y. Kang, B.-J. Choi, and C.S. Kim, 2013. Surface current response to wind and plumes in a bay-shape estuary of the eastern Yellow Sea: ocean radar observation, Ocean Science Journal, 48(1): 117-139. 

  52. Lee, S.-H., M.-J. Kim, C.-S. Kim, B.-J. Choi, and H.-B. Moon, 2017. Surface Circulation and Vertical Structure of Current off the Keum River Estuary, Korea in Later Spring 2008, Ocean Science Journal, 52(3): 307-327. 

  53. Lee, Y.L., S.W. Park, S.-H. Lee, and H.S. Ko, 2017b. Range-Doppler Map generating simulator for ship detection and tracking research using compact HF radar, Journal of the Institute of Electronics and Information Engineers, 54(5): 790-796 (in Korean with English abstract). 

  54. Lipa, B. and D.E. Barrick, 1983. Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE, IEEE Journal of Oceanic Engineering, 8(4): 226-253. 

  55. Lipa, B., B. Nyden, D.S. Ullman, and E. Terill, 2006. Seasonde radial velocities: Derivation and internal consistency, IEEE Journal of Oceanic Engineering, 31(4): 850-861. 

  56. Lipa, B., D. Barrick, S. I. Saitoh, Y. Ishikawa, T. Awaji, J. Largier, and N. Garfield, 2011. Japan Tsunami Current Flows Observed by HF Radars on Two Continents, Remote Sensing, 3: 1-17. 

  57. Lipa, B., D. Barrick, S. Diposaptono, J. Isaacson, B. K. Jena, B. Nyden, K. Rajesh, and T. Kumar, 2012a. High Frequency (HF) Radar Detection of the Weak 2012 Indonesian Tsunamis, Remote Sensing, 4: 2944-2956. 

  58. Lipa, B., J. Isaacson, B. Nyden, and D. Barrick, 2012b. Tsunami Arrival Detection with High Frequency (HF) Radar, Remote Sensing, 4(5): 1448-1461. 

  59. Lipa, B., H. Parikh, D. Barrick, H. Roarty, and S. Glenn, 2014. High Frequency Radar Observations of the June 2013 US East Coast Meteotsunami, Natural Hazards, 74(1): 109-122. 

  60. Lipa, B., D. Barrick, A. Alonso-Martirena, M. Fernandes, M. I. Ferrer, and B. Nyden, 2014. Brahan Project High Frequency Radar Ocean Measurements: Currents, Winds, Waves and Their Interactions, Remote Sensing, 6: 12094-12117. 

  61. Maresca, S., P. Braca, J. Horstmann, and R. Grasso, 2014. Maritime surveillance using multiple highfrequency surface-wave radars, IEEE Transactions on Geoscience and Remote Sensing, 52(8): 5056-5071. 

  62. Ministry of Science and ICT (MSICT), 2014. Radio Frequency allocations in Korea, Act 2014-58 (in Korean). 

  63. Paduan, J.D., D. E. Barrick, D. M. Fernandez, Z. Hallok, and C. C. Teague, 2001. Improving the accuracy of coastal HF radar current mapping, Hydro International, 5(1): 26-29. 

  64. Paduan, J.D. and H.C. Graber, 1997. Introduction to high frequency radar: reality and myth, Oceanography, 10(2): 36-39. 

  65. Paduan, J.D., K.C. Kim, M.S. Cook, and F.P. Chavez, 2006. Calibration and validation of high-frequency surface current observations, IEEE Journal of Oceanic Engineering, 31(4): 862-875. 

  66. Paduan, J.D. and L. Washburn, 2013. High-frequency radar observations of ocean surface currents, Annual Review of Marine Science, 5: 115-136. 

  67. Park, S.W., C.J. Cho, B.H. Ku, S.H. Lee, and H.S. Ko, 2017a. Simulation and Ship Detection Using Surface Radial Current Observing Compact HF Radar, IEEE Journal of Oceanic Engineering, 42(3): 544-555. 

  68. Park, S.W., C.J. Cho, B.H. Ku, S.H. Lee, and H.S. Ko, 2017b. Compact HF Surface Wave Radar Data Generating Simulator for Ship Detection and Tracking, IEEE Geoscience and Remote Sensing Letters, 14(6): 969-973. 

  69. Ponsford, A., L. Sevgi, and H. Chan, 2001. An integrated maritime surveillance system based on highfrequency surface-wave radars. 2. Operational status and system performance, IEEE Antennas and Propagation, 43(5): 52-63. 

  70. Roarty, H. J., D. E. Barrick, J. T. Kohut, and S. M. Glenn, 2010. Dual-use of Compact HF Radars for the Detection of Mid- and Large-size Vessels, Turkish Journal of Electrical Engineering & Computer Science, 18: 1-16. 

  71. Roarty, H. J., E. R. Lemus, E. Handel, S. M. Glenn, D. E. Barrick, and J. Isaacson, 2011. Performance Evaluation of SeaSonde High-Frequency Radar for Vessel Detection, Marine Technology Society Journal, 45: 1-11. 

  72. Rubio, A., J. Mader, L.Corgnati, C.Mantovani, A. Griffa, A. Novellino, C. Quentin, L. Wyatt, J. Schulz-Stellenfleth, J. Horstmann, P. Lorente, E. Zambianchi, M. Hartnett, C. Fernandes, V. Zervakis, P. Gorringe, A. Melet, and I. Puillat, 2017. HF Radar Activity in European Coastal Seas: Next Steps toward a Pan-European HF Radar Network, Frontiers in Marine Science, 4: 8. 

  73. Sevgi, L., A. Ponsford, and H. Chan, 2001. An integrated maritime surveillance system based on highfrequency surface-wave radars. 1. Theoretical background and numerical simulations, IEEE Antennas and Propagation, 43(4): 28-43. 

  74. Son, Y. T., S.-H. Lee, C.-S. Kim, J. C. Lee, and G.-H. Lee, 2007. Surface current variability in the Keum River Estuary (South Korea) during summer 2002 as observed by high-frequency radar and coastal monitoring buoy, Continental Shelf Research, 27: 43-63. 

  75. Song, K.-M., 2016. Analysis of Radio Environments Allocated to HF Ocean Surface Radar in Korea, Ocean and Polar Research, 38(4): 325-330 (in Korean with English abstract). 

  76. Washburn, L., E. Romero, C. Johnson, B. Emery, and C. Gotschalk, 2017. Measurement of Antenna Patterns for Oceanographic Radars Using Aerial Drones, Journal of Atmospheric and Oceanic Technology, 34(5): 971-981. 

  77. Weber, B.L. and D.E. Barrick, 1977. On the nonlinear theory for gravity waves on the ocean's surface, Part I: Derivations, Journal of Physical Oceanography, 7: 3-10. 

  78. Whelan, C. W., D. E. Barrick, P. M. Lilleboe, A. Kjelaas., O Breivik, V. Fernandez, and A. A. Alonso-Martirena, 2010. Rapid Deployable HF Radar for Norwegian Emergency Spill Operations, Proc. of Oceans 2010 IEEE, Sydney, Australia, May. 24-May. 27, pp. 1-3. 

  79. Wyatt, L. R., G. D. Burrows, and M. D. Moorhead, 1985. An assessment of a FMICW ground-wave radar system for ocean wave studies, International Journal of Remote Sensing, 6(1): 275-282. 

  80. Wyatt, L.R., 1991. High-Frequency Radar Measurements of the Ocean Wave-Directional Spectrum, IEEE Journal of Oceanic Engineering, 16(1): 163-169. 

  81. Wyatt, L.R., S.P. Thompson, and R.R. Burton, 1999. Evaluation of high frequency radar wave measurement, Coastal Engineering, 37: 259-282. 

  82. Wyatt, L.R., J. Jim Green, and A. Middleditch, 2011. HF radar data quality requirements for wave measurement, Coastal Engineering, 58: 327-336. 

  83. Yoshikawa, Y., A. Masuda, K. Marubayashi, M. Ishibashi, and A. Okuno, 2006. On the accuracy of HF radar measurement in the Tsushima Strait, Journal of Geophysical Research: Oceans, 111(C4). 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로