$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 유기 발광 다이오드의 광 추출 효율 개선을 위한 다양한 광학기능구조의 적용
Improvement of light extraction efficiency of OLED using various optical-functional nano-structures 원문보기

세라미스트 = Ceramist, v.21 no.1, 2018년, pp.64 - 79  

김양두 (고려대학교 신소재공학부) ,  김관 (고려대학교 신소재공학부) ,  허대홍 (고려대학교 신소재공학부) ,  이헌 (고려대학교 신소재공학부)

Abstract AI-Helper 아이콘AI-Helper

Recent years, OLEDs have been progressed intensively and been widely applied to Display and Lighting industry,Almost 100% internal quantum efficiency was achieved by developing new materials and structure optimization. However, external quantum efficiency was still low due to total internal reflecti...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
유기물 반도체 물질의 특징은? 그러나 전도성 유기물 반도체 물질과 이의 손쉬운 합성법이 개발되면서 유기물 반도체 물질은 세계산업에서 중요한 요소가 되었다. 더 나아가, 유기물 반도체 물질은 가볍고 유연하여 다양한 분야 적용 가능성이 뛰어나기 때문에 유기물 반도체에 대한 연구가 최근 30년 간 급격한 속도로 증가하고 있다.1-4) 이러한 광범위하고 지속적인 연구의 결과로 유기물 반도체를 이용한 소자의 성능이 향상되었다.
유기 반도체의 적용분야는? 1-4) 이러한 광범위하고 지속적인 연구의 결과로 유기물 반도체를 이용한 소자의 성능이 향상되었다. 유기 반도체는 박막 트랜지스터, 태양 전지 및 발광 장치와 같은 다양한 전자 장치에 연구 되고 적용되고 있다. 유기 발광 다이오드(organic lightemitting diode, OLED)에 적용되는 유기 재료의 경우에는 큰 엑시톤의 결합 에너지 때문에 빛을 방출하는데 한계가 있었으나 최근 새로운 유기 반도체가 개발됨에 따라 OLED의 효율, 밝기 및 안정성이 크게 향상되었다.
OLED의 높은 선명도, 넓은 시야각, 낮은 동작 전압이 가져오는 이점은? 반면에, OLED는 블랙 레벨 및 명암비가 우수하고, 높은 선명도, 넓은 시야각, 낮은 동작 전압, 빠른 응답 시간 및우수한 유연성을 갖는다.5-7) 이러한 이점 때문에, OLED 는 디스플레이에 점점 더 많이 적용되고 있을 뿐만 아니라 기술의 개발로 인해 가격도 상당히 하락했다. 그로인해 OLED는 첨단 제품에 점점 더 많이 응용되고 있으며 디스플레이 시장뿐 아니라 조명 시장에서도 시장 점유율이 점차 증가하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (61)

  1. M. Pope, H. P. Kallmann and P. Magnante, "Electroluminescence in organic crystals.", J. Chem. Phys., 38 [8] 2042-2043 (1963). 

  2. W. Helfrich and W. G. Schneider, "Recombination Radiation in Anthracene Crystals.", Phys. Rev. Lett., 14 [7] 229-231 (1965). 

  3. C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes.", Appl. Phys. Lett., 51 [12] 913-915 (1987). 

  4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, "Light-emitting diodes based on conjugated polymers.", nature, 347 [6293] 539-541 (1990). 

  5. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency.", Nature, 459 [7244] 234-238 (2009). 

  6. B. W. D'Andrade and S. R. Forrest, "White organic light-emitting devices for solid-state lighting.", Adv. Mater., 16 [18] 1585-1595 (2004). 

  7. G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer and K. Leo, "Triplet harvesting in hybrid white organic Light-Emitting diodes.", Adv. Funct. Mater., 19 [9] 1319-1333 (2009). 

  8. OLED lighting Annual Report, UBI RESEARCH, (2015). 

  9. M. C. Gather, A. Kohnen and K. Meerholz, "White organic light-emitting diodes." Adv. Mater., 23 [2] 233-248 (2011). 

  10. Y.-S. Tyan, "Organic light-emitting-diode lighting overview.", J. Photon. Energy, 1 [1] 011009-011009 (2011). 

  11. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong and J. Kido, "Recent progresses on materials for electrophosphorescent organic light-emitting devices.", Adv. Mater., 23 [8] 926-952 (2011) 

  12. M. Pfeiffer, S. R. Forrest, K. Leo and M. E. Thompson, "Electrophosphorescent pin organic light-emitting devices for very-high-efficiency flat-panel displays.", Adv. Mater., 14 [22] 1633-1636 (2002). 

  13. T. Tsutsui, E. Aminaka, C. P. Lin and D. U. Kim, "Extended molecular design concept of molecular materials for electroluminescence: sublimed-dye films, molecularly doped polymers and polymers with chromophores.", Philos. Trans. R. Soc. Lond. A, 355 [1725] 801-814 (1997). 

  14. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device.", J. Appl. Phys., 90 [10] 5048-5051 (2001). 

  15. K. Saxena, V. K. Jain and D. Singh Mehtam, "A review on the light extraction techniques in organic electroluminescent devices." Opt. Mater., 32 [1] 221-233 (2009). 

  16. K. Meerholz and D. C. Muller, "Outsmarting Waveguide Losses in Thin-Film Light-Emitting Diodes.", Adv. Funct. Mater., 11 [4] 251-253 (2001). 

  17. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lussem and K. Leo, "Top-emitting organic light-emitting diodes: Influence of cavity design.", Appl. Phys. Lett., 97 [25) 253308 (2010). 

  18. L. H. Smith and W. L. Barnes, "Using a low-index host layer to increase emission from organic light-emitting diode structures.", Org. Electron., 7 [6] 490-494 (2006). 

  19. T. Nakamura, N. Tsutsumi, N. Juni and H. Fujii, "Thin-film waveguiding mode light extraction in organic electroluminescent device using high refractive index substrate.", J. Appl. Phys., 97 [5] 054505 (2005). 

  20. G. Gaertner and H. Greiner, "Light extraction from OLEDs with (high) index matched glass substrates.", Proc. SPIE, 6999 [1] 69992T-11 (2008). 

  21. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lusem and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency.", Nature, 459 [7244] 234-238 (2009). 

  22. S. Mladenovski, K. Neyts, D. Pavicic, A. Werner and C. Rothe, "Exceptionally efficient organic light emitting devices using high refractive index substrates.", Opt. Express, 17 [9] 7562-7570 (2009). 

  23. Y. H. Sung, K.-H. Han, Y. D. Kim, Y. Han, J. J. Kim and H. Lee, "Air void optical scattering structure for high-brightness organic light emitting diodes.", Ceram. Int., 43 [1] S455-S459 (2017). 

  24. Y. H. Sung, P.-H. Jung, K.-H. Han, Y. D. Kim, J. J. Kim and H. Lee, "Improved out-coupling efficiency of organic light emitting diodes fabricated on a $TiO_2$ planarization layer with embedded Si oxide nanostructures", Opt. Mater. 72 828-832 (2017). 

  25. J.-B. Kim, J.-H. Lee, C.-K. Moon, S.-Y. Kim and J.-J. Kim, "Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Light-Emitting Diodes.", Adv. Mater., 25 [26] 3571-3577 (2013). 

  26. Y. S. Park, S. Lee, K. H. Kim, S. Y. Kim, J. H. Lee and J. J. Kim, "Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency.", Adv. Funct. Mater. 23 [39] 4914-4920 (2013). 

  27. M. H. Lu and J. C. Sturm, "Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment.", J. Appl. Phys. 91 [2] 595-604 (2002). 

  28. Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin and H. B. Sun, "Broadband Light Extraction from White Organic Light-Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity.", Adv. Mater. 25 [48] 6969-6974 (2013). 

  29. C. S. Choi, S. M. Lee, M. S. Lim, K. C. Choi, D. Kim, D. Y. Jeon and O. O. Park, "Improved light extraction efficiency in organic light emitting diodes with a perforated WO3 hole injection layer fabricated by use of colloidal lithography." Opt. Express. 20 [102] A309-A317 (2012). 

  30. K.-S. Han, J.-H. Shin, W.-Y. Yoon and H. Lee, "Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography", Sol. Energy Mater. Sol. Cells, 95 [1] 288-291 (2011). 

  31. K.-S. Han, H. Lee, D. Kim and H. Lee, "Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method", Sol. Energy Mater. Sol. Cells, 93 [8] 1214-1217 (2009). 

  32. H. Lee and G.-Y. Jung, "Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution", Microelectron. Eng., 77 [1] 42-47 (2005). 

  33. H. Lee, S. Hong, K. Yang and K. Choi, "Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography", Microelectron. Eng. 83 [2] 323-327 (2006). 

  34. H. Lee and G.-Y. Jung, "Wafer to wafer nano-imprinting lithography with monomer based thermally curable resin", Microelectron. Eng. 77 [2] 168-174 (2005). 

  35. H. Lee, S. Hong and K. Yang, “Fabrication of 100 nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography”, Appl. Phys. Lett. 88 [14] 143112 (2006). 

  36. Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. -D. Zhang, L. -S. Liu, A. -W. Li, J. -F. Song, Q. -D. Chen, and H. -B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length”, Org. Electron., 14 [6] 1597-1601 (2013). 

  37. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada and N. Shimoji, “Reduction of operating voltage in organic lightemitting diode by corrugated photonic crystal structure”, Appl. Phys. Lett., 85 [23] 5769-5771 (2004). 

  38. T. Nakamura, H. Fujii, N. Juni and N. Tsutusmi, “Enhanced Coupling of Light from Organic Electroluminescent Device Using Diffusive Particle Dispersed High Refractive Index Resin Substrate”, Opt. Rev., 13 [2] 104-110 (2006). 

  39. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids”, Nat. Photonics., 2 [8] 283-487 (2008). 

  40. K. -Y. Yang, K. -M, Yoon, K. -W. Choi, and H. Lee, “The direct nano-patterning of ZnO using nanoimprint lithography with ZnO-sol and thermal annealing”, Micro. Eng., 86 2228-2231 (2009). 

  41. K. S. Han, J. -H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography”, Sol. Energy Mater. Sol. Cells, 94 [3] 583-587 (2010). 

  42. H. Lee, and G. -Y. Jung, “UV curing nanoimprint lithography for uniform layers and minimized residual layers”, Jpn. J. Appl. Phys., 43 8369-8372 (2004). 

  43. J. -W. Kim, K. -Y. Yang, S. -H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method”, App. Sur. Sci., 254 [17] 5607-5611 (2008). 

  44. S. -H. Hong, B. -J. Bae, K. -S. Han, E. -J. Hong, and H. Lee, “Imprinted moth-eye antireflection patterns on glass substrate”, Elec. Mat. Lett., 5 [1] 39-42 (2009). 

  45. H. Park, K. J. Byeon, K. -Y. Yang, J. -Y. Cho, and H. Lee, “The fabrication of a patterned ZnO nanorod array for high brightness LEDs”, Nanotech., 21 [35] 355304 (2010). 

  46. J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli and W. Brutting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings”, Opt. Express., 19 [S1] A7-A19 (2011). 

  47. W. H. Koo, S. M. Jeong, S. Nishimura, F. Araoka, K. Ishikawa, T. Toyooka and H. Takezoe, “Polarization Conversion in Surface-Plasmon-Coupled Emission from Organic Light-Emitting Diodes Using Spontaneously Formed Buckles”, Adv. Mater., 23 [8] 1003-1007 (2011). 

  48. W. H. Koo, W. Youn, P. Zhu, X. -H. Li, N. Tansu, F. So, “Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array”, Adv. Func. Mater., 22 3454-3459 (2012). 

  49. A. O. Altun, S. Jeon, J. Shim, J. -H. Jeong, D. -G. Choi, K. -D. Kim, J. -H. Choi, S. -W. Lee, E. -S. Lee, H. -D. Park, J. R. Youn, J. -J. Kim, Y. -H. Lee, J. -W. Kang, “Corrugated organic light emitting diodes for enhanced light extraction”, Org. Electron., 11 [5] 711-716 (2010). 

  50. J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices”, Appl. Phys. Lett., 99 103303 (2011). 

  51. K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography”, Appl. Phys. Lett., 90 111114 (2007). 

  52. S. Lee, J.-H. Lee, J.-H. Lee, and J.-J. Kim, "The Mechanism of Charge Generation in Charge-Generation Units Composed of p-Doped Hole-Transporting Layer/HATCN/n-Doped Electron-Transporting Layers", Adv. Funct. Mater., 22 [4] 855-860 (2012). 

  53. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography”, Appl. Phys. Lett., 85 [23] 111114 (2004). 

  54. Y. -G. Bi, J. Feng, Y. -F. Li, X. -L. Zhang, Y. -F. Liu, Y. Jin, and H. -B. Sun, "Broadband Light Extraction from White Organic Light-Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity", Adv. Mater., 25 6969-6974 (2013). 

  55. W. H. Koo, W. Youn, P. Zhu, X. -H. Li, N. Tansu, and F. So, "Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array", Adv. Funct. Mater., 22 3454-3459 (2012). 

  56. Y. Jiang, S. Chen, G. Li, H. Li, and H.-S. Kwok, Adv. Optical Mater., 2, 5, 418-422 (2014) 

  57. Y. D. Kim, K. -H. Han, S. -J. Park, J. -B. Kim, J. -H. Shin, J. J. Kim, and H. Lee, "Enhanced light extraction efficiency in organic light emitting diodes using a tetragonal photonic crystal with hydrogen silsesquioxane", Opt. Lett., 39 [20] 5901-5904 (2014). 

  58. Sohee Jeon, Jun-ho Jeong, Young Seok Song, Won-Ik Jeong, Jang-Joo Kim and Jae Ryoun Youn, “Vacuum nano-hole array embedded organic light emitting diodes”, Nanoscale, 6 [46] 2642-2648 (2014). 

  59. Q. -D. Ou, L. Zhou, Y. -Q. Li, S. Shen, J. -D. Chen, C. Li, Q. -K. Wang, S. -T. Lee, and J. -X. Tang, “Extremely Efficient White Organic Light-Emitting Diodes for General Lighting”, Adv. Funct. Mater., 24 [46] 7249-7256 (2014). 

  60. H. -J. Choi, S. Choo, P. -H. Jong, J. -H. Shin, Y. -D. Kim, and H. Lee, “Uniformly embedded silver nanomesh as high bendable transparent conducting electrode”, Nanotech., 26 [5] 055305-055312 (2015). 

  61. P. -H. Jung, Y. D. Kim, H. -J. Choi, Y. H. Sung, and H. Lee, "A transparent embedded Cu/Au-nanomesh electrode on flexible polymer film substrates", RSC Adv., 6 92970-92974 (2016). 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로