$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전자파가 신경세포와 스트레스 반응에 미치는 영향에 관한 최신 연구동향 원문보기

電磁波技術 : 韓國電磁波學會誌 = The Proceedings of the Korean Institute of Electromagnetic Engineering and Science, v.29 no.3, 2018년, pp.21 - 31  

김주환 (단국대학교 의과대학) ,  이진구 (단국대학교 의과대학) ,  김학림 (단국대학교 의과대학)

초록이 없습니다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 하지만 전자파가 신경세포에 미치는 가능한 영향과 관련하여 다수의 연구들이 최근에 많은 관심 속에서 진행되었지만, 실험조건에 따라서 상반된 결과들이 보고되어 일반적인 이해까지는 아직도 해결해야 할 일이 많다. 따라서 본 연구는 전자파에 노출된 세포 또는 동물모델에서 중추신경계의 신경세포와 스트레스 반응에 대한 최신의 연구결과들을 살펴보고 요약하여 전자파가 생체조절기전에 미치는 영향에 관한 이해를 높이고자 한다.
  • HEK293 세포에 발현된 T-type 칼슘채널에 대한 전자파의 노출이 arachidonic acid 및 leukotriene E4를 증가시켜 채널을 억제한다[48]. 이러한 결과는 전자파가 직접적으로 세포내 칼슘채널 발현조절 등에 영향을 주는 것 외에도 채널의 기능을 조절하는 세포내 신호전달체계에 대한 영향을 통해서 간접적으로 조절할 수 있음을 제시한다. 또한, 배아신경줄기세포에 대한 초저주파 전자파 노출(50 Hz, 1 mT)이 세포내 칼슘의 농도의 증가와 함께 TRPC1의 발현을 유의하게 증가시켜 신경분화와 신경증식을 유발할 수 있어 전자파 노출이 태아의 뇌신경계 발달에 영향을 미칠 수 있음이 제시되었다[49].
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
자가포식의 종류는 어떻게 구분되는가? 이러한 자가포식의 종류에는 일반적으로 거대자가포식(macroautophagy), 미세자가포식(microautophagy), 그리고 소낭의 형성 없이 샤페론에 의해 단백질의 분해가 일어나는 샤페론 중개 자가포식(Chaperone-Mediated Autophagy: CMA)의 3가지 형태로 나뉜다[9]. 또한, 거대자가포식은 선택된 세포 소기관(oragenelles)에 따라 mitophagy(미토콘드리아), lipo- phagy(지질), pexophagy(퍼옥시솜, peroxisome), chlorophagy(엽록체), ribophagy(리보솜, ribosome), necleophagy(핵, nucleus)등으로 분류된다[10]~[13].
전자기장에 노출되었을 때 가능한 생체 영향이 아직까지 확실하게 검증되지 않고 이와 관련된 연구 결과들이 부족함으로써 초래되는 결과는 무엇인가? 그러나 전자기장에 노출되었을 때 가능한 생체 영향은 아직까지 확실하게 검증된 바가 없으며, 가능한 건강유해성과 관련하여 명확한 답을 제시하기에는 생물학적 유해성에 대한 충분한 연구결과들이 부족한 실정이다. 따라서 전자기파의 생체 영향에 관한 다수의 미지한 상황에 따른 막연한 두려움이 존재하며, 일반적인 대중들에게 전자파의 생체 영향에 관한 과학적으로 근거 없는 부정적인 정보에 노출되게 한다. 이에 추가하여 다양한 연구자들에 의해서 발표된 연구결과들은 서로 상반되는 결과를 제시하기도 하며, 특히 전자파에 의한 생체 영향 기전에 대한 자세한 정보가 밝혀지지 않아서 막연하고 비과학적이며, 불확실한 정보에 기인하는 전자파 노출에 대한 두려움을 해결하지 못하고 있다.
자가포식 작용은 어떠한 특성을 가지고 있는가? 세포자가포식(autophagy)은 세포 내 손상되고 노화된 세포 소 기관들과 불필요하게 응집된 단백질들을 분해하는 기능을 수행하는데, 이는 세포의 생존 및 항상성 유지를 위한 필수적인 일련의 세포보호 기작이다. 따라서 자가포식 작용은 건강한 상태의 유지를 위해 우리의 몸에서 항상 일어나고 있으며, 여러 가지 스트레스 상황에서는 효율적으로 빠르게 활성화되는 특성을 가지고 있다. 세포내의 자가포식 활성화 조절은 특히 현대인에게 대표적인 신경퇴행성 질환인 알쯔하이머(Alzheimer's disease)나 파킨슨병(Parkinson’s disease)은 신경세포 내에 비정상적으로 아밀로이드 베타(amyloid β) 또는 알파 시누크린(α-synuclien) 같은 단백질의 축적이 주요 원인이 된다[7].
질의응답 정보가 도움이 되었나요?

참고문헌 (71)

  1. R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, F. Islami, L. Galichet, and K. Straif, "Carcinogenicity of radiofrequency electromagnetic fields", The Lancet Oncology, vol. 12, no. 7, pp. 624-626, 2011. 

  2. C. E. Langer, P. de Llobet, A. Dalmau, J. Wiart, G. Goedhart, M. Hours, G. P. Benke, E. Bouka, R. Bruchim, K.-H. Choi, A. Eng, M. Ha, M. Karalexi, K. Kiyohara, N. Kojimahara, D. Krewski, H. Kromhout, B. Lacour, A. t Mannetje, M. Maule, E. Migliore, C. Mohipp, F. Momoli, E. Petridou, K. Radon, T. Remen, S. Sadetzki, M. R. Sim, T. Weinmann, R. Vermeulen, E. Cardis, and M. Vrijheid, "Patterns of cellular phone use among young people in 12 countries: Implications for RF exposure", Environment International, vol. 107, pp. 65-74, 2017. 

  3. H. Kleinlogel, T. Dierks, T. Koenig, H. Lehmann, A. Minder, and R. Berz, "Effects of weak mobile phone - electromagnetic fields (gsm, umts) on event related potentials and cognitive functions", Bioelectromagnetics, vol. 29 no. 6, pp. 488-497, 2008. 

  4. W. Peter, "Thermal effects of radiation from cellular telephones", Physics in Medicine & Biology, vol. 45, no. 8, pp. 2363, 2000. 

  5. L. Birks, M. Guxens, E. Papadopoulou, J. Alexander, F. Ballester, M. Estarlich, M. Gallastegi, M. Ha, M. Haugen, A. Huss, L. Kheifets, H. Lim, J. Olsen, L. Santa-Marina, M. Sudan, R. Vermeulen, T. Vrijkotte, E. Cardis, and M. Vrijheid, "Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts", Environment International, vol. 104, pp. 122-131, 2017. 

  6. S. Sadetzki, C. E. Langer, R. Bruchim, M. Kundi, F. Merletti, R. Vermeulen, H. Kromhout, A.-K. Lee, M. Maslanyj, M. R. Sim, M. Taki, J. Wiart, B. Armstrong, E. Milne, G. Benke, R. Schattner, H.-P. Hutter, A. Woehrer, D. Krewski, C. Mohipp, F. Momoli, P. Ritvo, J. Spinelli, B. Lacour, D. Delmas, T. Remen, K. Radon, T. Weinmann, S. Klostermann, S. Heinrich, E. Petridou, E. Bouka, P. Panagopoulou, R. Dikshit, R. Nagrani, H. Even-Nir, A. Chetrit, M. Maule, E. Migliore, G. Filippini, L. Miligi, S. Mattioli, N. Yamaguchi, N. Kojimahara, M. Ha, K.-H. Choi, A. t. Mannetje, A. Eng, A. Woodward, G. Carretero, J. Alguacil, N. Aragones, M. M. Suare-Varela, G. Goedhart, A. A. Y. N. Schouten-van Meeteren, A. A. M. J. Reedijk, and E. Cardis, "The mobi-kids study protocol: Challenges in assessing childhood and adolescent exposure to electromagnetic fields from wireless telecommunication technologies and possible association with brain tumor risk", Frontiers in Public Health, vol. 2, no. 124, 2014. 

  7. R. A. Nixon, "The role of autophagy in neurodegenerative disease", Nat. Med., vol. 19, no. 8, pp. 983-997, 2013. 

  8. C. Fujimoto, S. Iwasaki, S. Urata, H. Morishita, Y. Sakamaki, M. Fujioka, K. Kondo, N. Mizushima, and T. Yamasoba, "Autophagy is essential for hearing in mice", Cell Death Dis., vol. 8, no. 5, pp. e2780, 2017. 

  9. Y. Feng, D. He, Z. Yao, and D. J. Klionsky, "The machinery of macroautophagy", Cell Res, vol. 24, no. 1, pp. 24-41, 2014. 

  10. R. J. Youle, D. P. Narendra, "Mechanisms of mitophagy", Nat. Rev. Mo.l Cell Biol., vol. 12, no. 1, pp. 9-14, 2011. 

  11. K. Liu, M. J. Czaja, "Regulation of lipid stores and metabolism by lipophagy", Cell Death Differ, vol. 20, no. 1, pp. 3-11, 2013. 

  12. A. L. Anding, E. H. Baehrecke, "Cleaning house: Selective autophagy of organelles", Dev. Cell, vol. 41, no. 1, pp. 10-22, 2017. 

  13. H. An, J. W. Harper, "Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy", Nat. Cell Biol., vol. 20, no. 2, pp. 135-143, 2018. 

  14. C. He, D. J. Klionsky, "Regulation mechanisms and signaling pathways of autophagy", Annu. Rev. Genet., vol. 43, pp. 67-93, 2009. 

  15. A. Abada, Z. Elazar, "Getting ready for building: Signaling and autophagosome biogenesis", EMBO Rep., vol. 15, no. 8, pp. 839-852, 2014. 

  16. H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, "Dynamics and diversity in autophagy mechanisms: Lessons from yeast", Nat. Rev. Mol. Cell Biol., vol. 10, no. 7, pp. 458-467, 2009. 

  17. S. He, D. Ni, B. Ma, J. H. Lee, T. Zhang, I. Ghozalli, S. D. Pirooz, Z. Zhao, N. Bharatham, B. Li, S. Oh, W. H. Lee, Y. Takahashi, H. G. Wang, A. Minassian, P. Feng, V. Deretic, R. Pepperkok, M. Tagaya, H. S. Yoon, and C. Liang, "Ptdins(3) p-bound uvrag coordinates Golgi-er retrograde and atg9 transport by differential interactions with the er tether and the beclin 1 complex", Nat. Cell Biol., vol. 15, no. 10, pp. 1206-1219, 2013. 

  18. Y. Kabeya, N. Mizushima, A. Yamamoto, S. Oshitani-Okamoto, Y. Ohsumi, and T. Yoshimori, "Lc3, gabarap and gate16 localize to autophagosomal membrane depending on form-ii formation", J. Cell Sci., 117(Pt 13), pp. 2805-2812, 2004. 

  19. Y. Chen, D. Klionsky, "The regulation of autophagy, unanswered questions", J. Cell Sci., 124, pp. 161-170, 2011. 

  20. D. Maskey, S. Yousefi, I. Schmid, I. Zlobec, A. Perren, R. Friis, and H. U. Simon, "Atg5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy", Nat. Commun., vol. 4, pp. 2130, 2013. 

  21. G. Marino, M. Niso-Santano, E. H. Baehrecke, and G. Kroemer, "Self-consumption: The interplay of autophagy and apoptosis", Nat. Rev. Mol. Cell Biol., vol. 15, no. 2, pp. 81-94, 2014. 

  22. H. Martini-Stoica, Y. Xu, A. Ballabio, and H. Zheng, "The autophagy-lysosomal pathway in neurodegeneration: A tfeb perspective", Trends. Neurosci., vol. 39, no. 4, pp. 221-234, 2016. 

  23. S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen, "P62/sqstm1 binds directly to atg8/lc3 to facilitate degradation of ubiquitinated protein aggregates by autophagy", J. Biol. Chem., vol. 282, no. 33, pp. 24131-24145, 2007. 

  24. N. Mizushima, T. Yoshimori, "How to interpret lc3 immunoblotting", Autophagy, vol. 3, no. 6, pp. 542-545, 2014. 

  25. D. J. Klionsky, K. Abdelmohsen, A. Abe, M.. J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C. M. Adams, P. D. Adams, K. Adeli et al., "Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)", Autophagy, vol. 12, no. 1, pp. 1-222, 2016. 

  26. D. P. Jiang, J. H. Li, J. Zhang, S. L. Xu, F. Kuang, H. Y. Lang, Y. F. Wang, G. Z. An, J. Li, and G. Z. Guo, "Long-term electromagnetic pulse exposure induces abeta deposition and cognitive dysfunction through oxidative stress and overexpression of app and bace1", Brain Res., vol. 1642, pp. 10-19, 2016. 

  27. N. Marchesi, C. Osera, L. Fassina, M. Amadio, F. Angeletti, M. Morini, G. Magenes, L. Venturini, M. Biggiogera, G. Ricevuti, S. Govoni, S. Caorsi, A. Pascale, and S. Comincini, "Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields", J. Cell Physiol., vol. 229, no. 11, pp. 1776-1786, 2014. 

  28. J. H. Kim, D. H. Yu, Y. H. Huh, E. H. Lee, H. G. Kim and H. R. Kim, "Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice", Sci. Rep., vol. 7, pp. 41129, 2017. 

  29. J. H. Kim, Y. H. Huh, and H. R. Kim, "Induction of autophagy in the striatum and hypothalamus of mice after 835 MHz radiofrequency exposure", Plos One, vol. 11, no. 4, pp. e0153308, 2016. 

  30. J. H. Kim, D. H. Yu, H. J. Kim, Y. H. Huh, S. W. Cho, J. K. Lee, H. G. Kim, and H. R. Kim, "Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice", Toxicol. Ind. Health, vol. 34 no. 1, pp. 23-35, 2018. 

  31. K. Bhatheja, J. Field, "Schwann cells: Origins and role in axonal maintenance and regeneration", The International Journal of Biochemistry & Cell Biology, vol. 38, no. 12, pp. 1995-1999, 2006. 

  32. M. Redmayne, O. Johansson, "Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence", J. Toxicol. Environ. Health B Crit. Rev., vol. 17, no. 5, pp. 247-258, 2014. 

  33. D. Belpomme, C. Campagnac, and P. Irigaray, "Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder", Reviews on Environmental Health, vol. 30, no. 4, pp. 251, 2015. 

  34. A. ?kinci, T. Mercantepe, D. Unal, H. S. Erol, A. Sahin, A. Aslan, O. Bas, H. Erdem, O. F. Sonmez, H. Kaya, and E. Odaci, "Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900 MHz electromagnetic field during early and mid-adolescence", Journal of Chemical Neuroanatomy, vol. 75, pp. 99-104, 2016. 

  35. O. Johansson, M. Redmayne, "Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot", Electromagnetic Biology and Medicine, vol. 35, no. 4, pp. 393-397, 2016. 

  36. A. Barthelemy, A. Mouchard, M. Bouji, K. Blazy, R. Puigsegur, and A.-S. Villegier, "Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures", Environmental Science and Pollution Research, vol. 23, no. 24, pp. 25343-25355, 2016. 

  37. M. A. Sherafat, M. Heibatollahi, S. Mongabadi, F. Moradi, M. Javan, and A. Ahmadiani, "Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination", Journal of Molecular Neuroscience, vol. 48, no. 1, pp. 144-153, 2012. 

  38. F. J. Medina-Fernandez, B. M. Escribano, E. Aguera, M. Aguilar-Luque, M. Feijoo, E. Luque, F. I. Garcia-Maceira, A. Pascual-Leone, R. Drucker-Colin, and I. Tunez, "Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis", Free Radical Research, vol. 51, no. 5, pp. 460-469, 2017. 

  39. M. L. Pall, "Electromagnetic fields act via activation of voltage gated calcium channels to produce beneficial or adverse effects", Journal of Cellular and Molecular Medicine, vol. 17, no. 8, pp. 958-965, 2013. 

  40. C. A. Buckner, A. L. Buckner, S. A. Koren, M. A. Persinger, and R. M. Lafrenie, "Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves t-type calcium channels", PLoS One, vol. 10, no. 4, pp. e0124136, 2015. 

  41. E. Nanou, W. A. Catterall, "Calcium channels, synaptic plasticity, and neuropsychiatric disease", Neuron, vol. 98, no. 3, pp. 466-481, 2018. 

  42. E. Pchitskaya, E. Popugaeva, and I. Bezprozvanny, "Calcium signaling and molecular mechanisms underlying neurodegenerative diseases", Cell Calcium, vol. 70, pp. 87-94, 2018. 

  43. E. Neher, T. Sakaba, "Multiple roles of calcium ions in the regulation of neurotransmitter release", Neuron, vol. 59, no. 6, pp. 861-872, 2008. 

  44. Z. Sun, J. Ge, B. Guo, J. Guo, M. Hao, Y.. Wu, Y. Lin, T. La, P. Yao, Ya. Mei, Y. Feng, and L. Xue, "Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse." Scientific Reports, vol. 6, pp. 21774, 2016. 

  45. J. H. Kim, U. D. Sohn, H.-G. Kim, and H. R. Kim, "Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus", Korean J. Physiol. Pharmacol., vol. 22, no. 3, pp. 277-289, 2018. 

  46. J. H. Kim, H. J. Kim, D. H. Yu, H. S. Kweon, Y. H. Huh, and H. R. Kim, "Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field", PLoS One, vol. 12, no. 10, pp. e0186416, 2017. 

  47. T. S. Aldad, G. Gan, X. B. Gao, and H. S. Taylor, "Fetal radiofrequency radiation exposure from 800-1,900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice", Sci. Rep., vol. 2, pp. 312, 2012. 

  48. Y. Cui, X. Liu, T. Yang, Y.-A. Mei, and C. Hu, "Exposure to extremely low-frequency electromagnetic fields inhibits t-type calcium channels via aa/lte4 signaling pathway", Cell Calcium, vol. 55, no. 1, pp. 48-58, 2014. 

  49. Q. Ma, C. Chen, P. Deng, G. Zhu, M. Lin, L. Zhang, S. Xu, M. He, Y. Lu, W. Duan, H. Pi, Z. Cao, L. Pei, M. Li, C. Liu, Y. Zhang, M. Zhong, Z. Zhou, and Z. Yu, "Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating trpc1", PLOS ONE, vol. 11, no. 3, pp. e0150923, 2016. 

  50. L. E. Birks, B. Struchen, M. Eeftens, L. van Wel, A. Huss, P. Gajsek, L. Kheifets, M. Gallastegi, A. Dalmau-Bueno, M. Estarlich, M. F. Fernandez, I. K. Meder, A. Ferrero, A. Jimenez-Zabala, M. Torrent, T. G. M. Vrijkotte, E. Cardis, J. Olsen, B. Valic, R. Vermeulen, M. Vrijheid, M. Roosli, and M. Guxens, "Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe", Environment International, vol. 117, pp. 204-214, 2018. 

  51. I. J. Kopin, "Definitions of stress and sympathetic neuronal responses", Annals of the New York Academy of Sciences, vol. 771, no. 1, pp. 19-30, 1995. 

  52. C. Tsigos, I. Kyrou, E. Kassi, and G. P. Chrousos, Stress, endocrine physiology and pathophysiology. Endotext, 2000. 

  53. A. E. Calogero, R. Bernardini, P. W. Gold, and G. P. Chrousos, "Regulation of rat hypothalamic corticotropin-releasing hormone secretion in vitro: Potential clinical implications", Adv. Exp. Med. Biol., vol. 245, pp. 167-181, 1988. 

  54. K. Pacak, "Stressor-specific activation of the hypothalamic-pituitary-adrenocortical axis", Physiol. Res., 49 Suppl 1, pp. S11-17, 2000. 

  55. M. K. Borsody, J. M. Weiss, "Alteration of locus coeruleus neuronal activity by interleukin-1 and the involvement of endogenous corticotropin-releasing hormone", Neuroimmunomodulation, vol. 10, no. 2, pp. 101-121, 2002. 

  56. P. H. Black, "Stress and the inflammatory response: A review of neurogenic inflammation", Brain, Behavior, and Immunity, vol. 16, no. 6, pp. 622-653, 2002. 

  57. M. Bouji, A. Lecomte, C. Gamez, K. Blazy, and A. S. Villegier, "Neurobiological effects of repeated radiofrequency exposures in male senescent rats", Biogerontology, vol. 17, no. 5-6, pp. 841-857, 2016. 

  58. M. Bouji, A. Lecomte, Y. Hode, R. de Seze, and A. S. Villegier, "Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats", Exp. Gerontol., vol. 47, no. 6, pp. 444-451, 2012. 

  59. S. M. Mahdavi, H. Sahraei, P. Yaghmaei, and H. Tavakoli, "Effects of electromagnetic radiation exposure on stress-related behaviors and stress hormones in male Wistar rats", Biomol. Ther. (Seoul), vol. 22, no. 6, pp. 570-576, 2014. 

  60. R. Szemerszky, D. Zelena, I. Barna, and G. Bardos, "Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats", Brain Res. Bull., vol. 81, no. 1, pp. 92-99, 2010. 

  61. C. dos Santos, F. B. Ferreira, L. M. Goncalves-Neto, S. R. Taboga, A. C. Boschero, and A. Rafacho, "Age- and genderelated changes in glucose homeostasis in glucocorticoid-treated rats", Can. J. Physiol. Pharmacol., vol. 92, no. 10, pp. 867-878, 2014. 

  62. T. Sasaki, M. Senda, S. Kim, S. Kojima, and A. Kubodera, "Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain", Nucl. Med. Biol., vol. 28, no. 1, pp. 25-31, 2001. 

  63. F. Shekoohi Shooli, S. A. Mortazavi, S. Jarideh, S. Nematollahii, F. Yousefi, M. Haghani, S. M. Mortazavi, and M. B. Shojaeiard, "Short-term exposure to electromagnetic fields generated by mobile phone jammers decreases the fasting blood sugar in adult male rats", J. Biomed. Phys. Eng., vol. 6, no. 1, pp. 27-32, 2016. 

  64. M. M. Scott, Y. Xu, C. F. Elias, and K. W. Williams, "Central regulation of food intake, body weight, energy expenditure, and glucose homeostasis", Front Neurosci., vol. 8, pp. 384, 2014. 

  65. H. Tsuneki, T. Wada, and T. Sasaoka, "Role of orexin in the central regulation of glucose and energy homeostasis", Endocr., J., vol. 59, no. 5, pp. 365-374, 2012. 

  66. A. Tups, J. Benzler, D. Sergi, S. R. Ladyman, and L. M. Williams, "Central regulation of glucose homeostasis", Compr. Physiol., vol. 7, no. 2, pp. 741-764, 2017. 

  67. Y. Minokoshi, T. Alquier, N. Furukawa, Y. B. Kim, A. Lee, B. Xue, J. Mu, F. Foufelle, P. Ferre, M. J. Birnbaum, B. J. Stuck, and B. B. Kahn, "Amp- kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus", Nature, vol. 428, no. 6982, pp. 569-574, 2004. 

  68. C. Canto, Z. Gerhart-Hines, J. N. Feige, M. Lagouge, L. Noriega, J. C. Milne, P. J. Elliott, P. Puigserver, and J. Auwerx, "Ampk regulates energy expenditure by modulating nad+ metabolism and sirt1 activity", Nature, vol. 458, no. 7241, pp. 1056-1060, 2009. 

  69. S. F. Leibowitz, K. E. Wortley, "Hypothalamic control of energy balance: Different peptides, different functions", Peptides, vol. 25, no. 3, pp. 473-504, 2004. 

  70. M. W. Schwartz, S. C. Woods, D. Porte, Jr., R. J. Seeley, and D. G. Baskin, "Central nervous system control of food intake", Nature, vol. 404, no. 6778, pp. 661-671, 2000. 

  71. U. Andersson, K. Filipsson, C. R. Abbott, A. Woods, K. Smith, S. R. Bloom, D. Carling, and C. J. Small, "Amp-activated protein kinase plays a role in the control of food intake", J. Biol. Chem,. vol. 279, no. 13, pp. 12005-12008, 2004. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로