$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina 원문보기

Mycobiology, v.46 no.1, 2018년, pp.47 - 51  

Ruiz-Romero, Paola (Instituto de Ciencias Agricolas de la Universidad Autonoma de Baja California (ICA-UABC)) ,  Valdez-Salas, Benjamin (Instituto de Ingenieria de la Universidad Autonoma de Baja California) ,  Gonzalez-Mendoza, Daniel (Instituto de Ciencias Agricolas de la Universidad Autonoma de Baja California (ICA-UABC)) ,  Mendez-Trujillo, Vianey (Instituto de Ingenieria de la Universidad Autonoma de Baja California)

Abstract AI-Helper 아이콘AI-Helper

In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV-visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV-visible spectroscopic analysis showed the absorbance peaked ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Figure 5. Antifungal activity of AgNPs from Y. schidigera against F. solani and M. phaseolina after 3, 6, and 9 days of treatment.
  • Measurements were made by means of dynamic light scattering (DLS) in the range of 0.1–1000 mm at 25℃, using laser wavelength of 780 nm and a scattering angle of 90℃.

대상 데이터

  • The average hydrodynamic size and zeta potential of the AgNPs was determined by the DLS as shown in Figure 3 and Table 1. The sample was a mixture of AgNPs of different sizes, DLS intensity analysis gave two broad peak and was weighted toward the larger particles (z-average size of 6.0 mm and 748 nm). The nanoparticle size is larger as presented by the DLS; this could only be explained based on the hydrodynamic radius which is not a true size as a result of the hydration layer around the particles as well as the presence of capping and stabilizing agents [13].

데이터처리

  • Data were processed by analysis of variance with p <.05, with Tukey test, using the Statistical Analysis System version 6.12 (SAS Institute, 1997).

이론/모형

  • The hydrodynamic sizes and the zeta potential of biosynthesized AgNPs in solution were analyzed using a Nanotrac Wave instrument (Microtrac). Three milliliter of sample was transferred in the clear disposable zeta cell for the measurement of zeta potential.
본문요약 정보가 도움이 되었나요?

참고문헌 (27)

  1. 1 Liu L , Ji M , Chen M , et al The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system . Food Sci Nutr . 2016 ; 6 : 858 – 868 . 

  2. 2 Narro-Sanchez J , Davalos-Gonzalez PA , Velasquez-Valle R , et al Main strawberry diseases in Irapuato, Guanajuato, and Zamora, Michoacan, Mexico . Acta Hortic . 2006 ; 708 : 167 – 171 . 

  3. 3 Sharifi K , Mahdavi M. First report of strawberry crown and root rot caused by Macrophomina phaseolina in Iran . Iran J Plant Pathol . 2011 ; 47 : 161 . 

  4. 4 Pastrana AM , Capote N , De los Santos B , et al First report of Fusarium solani causing crown and root rot on strawberry crops in southwestern Spain . Plant Dis . 2014 ; 98 : 161 . 

  5. 5 Mehmood N , Riaz A , Jabeen N , et al First report of Fusarium solani causing fruit rot of strawberry in Pakistan . Plant Dis . 2017 ; 9 : 1681 . 

  6. 6 Nam MH , Park MS , Kim HG , et al Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation . J Microbiol Biotechnol . 2009 ; 19 : 520 – 524 . 19494701 

  7. 7 Pastrana A , Basallote-Ureba M , Aguado A , et al Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani , using Trichoderma asperellum and Bacillus spp . Phytopathol Mediterr . 2016 ; 55 : 109 – 120 . 

  8. 8 Adesina MF , Lembke A , Costa R , et al Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum : site‐dependent composition and diversity revealed . Soil Biol Biochem . 2007 ; 39 : 2818 – 2828 . 

  9. 9 Yamanaka M , Hara K , Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli , studied by energy-filtering transmission electron microscopy and proteomic analysis . Appl Environ Microbiol . 2005 ; 71 : 7589 – 7593 . 16269810 

  10. 10 Lamsal K , Kim S-W , Jung JH , et al Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin . Mycobiology . 2011 ; 39 : 26 – 32 . 22783069 

  11. 11 Piacente S , Pizza C , Oleszek W. Saponins and phenolics of Yucca schidigera Roezl: chemistry and bioactivity . Phytochem Rev . 2005 ; 4 : 177 – 190 . 

  12. 12 Miyakoshi M , Tamura Y , Masuda H , et al Antiyeast steroidal saponins from Yucca schidigera (Mohave Yucca), a new anti-food-deteriorating agent . J Nat Prod . 2000 ; 63 : 332 – 338 . 10757713 

  13. 13 Ezealisiji KM , Noundou XS , Ukwueze SE. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity . Appl Nanosci . 2017 ; 7 : 905 -- 911 . 

  14. 14 Rejinolda NS , Muthunarayanan M , Muthuchelian K , et al Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro . Carbohydr Polym . 2011 ; 84 : 407 – 416 . 

  15. 15 Medda S , Hajra A , Dey U. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp . Appl Nanosci . 2015 ; 5 : 875 – 880 . 

  16. 16 Ouda SM. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea . Res J Microbiol . 2014 ; 9 : 34 – 42 . 

  17. 17 Boxi SS , Mukherjee K , Parja S. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens . Nanotechnology . 2016 ; 8 : 085103 . 

  18. 18 Mahdizadeh V , Safaie N , Khelghatibana F. Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum . J Crops Prot . 2015 ; 4 : 291 – 300 . 

  19. 19 Villamizar-Gallardo R , Cruz OJF , Ortiz-Rodriguez OR. Efeito fungicida de nanopartículas de prata em fungos toxigênicos em cacaueiro . Pesq Agropec Bras . 2016 ; 51 : 1929 – 1936 . 

  20. 20 Shafaghat A. Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity . Synth React Inorg Met-Org Nano-Met Chem . 2015 ; 45 : 381 – 387 . 

  21. 21 Kim SW , Kim KS , Lamsal K , et al An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp . J Microbiol Biotechnol . 2009 ; 19 : 760 – 764 . 19734712 

  22. 22 Kotzybik K , Gräf V , Kugler L , et al Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum . PLoS One . 2016 ; 11 : e0150855 . 26974550 

  23. 23 Gosens I , Post JA , de la Fonteyne LJ , et al Impact of agglomeration state of nano and submicron sized gold particles on pulmonary inflammation . Part Fibre Toxicol . 2010 ; 7 : 37 . 21126342 

  24. 24 Müller KH , Motskin M , Philpott AJ , et al The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages . Biomaterials . 2014 ; 35 : 1074 – 1088 . 24183166 

  25. 25 Ogar A , Tylko G , Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth . Sci Total Environ . 2015 ; 521–522 : 305 – 314 . 

  26. 26 Dakal TC , Kumar A , Majumdar RS , et al Mechanistic basis of antimicrobial actions of silver nanoparticles . Front Microbiol . 2016 ; 7 : 1831 . 27899918 

  27. 27 Ishida K , Cipriano TF , Rocha GM , et al Silver nanoparticle production by the fungus Fusarium oxysporum : nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts . Mem Inst Oswaldo Cruz . 2014 ; 109 : 220 – 228 . 24714966 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로