$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Non-stationary Sparse Fading Channel Estimation for Next Generation Mobile Systems 원문보기

KSII Transactions on internet and information systems : TIIS, v.12 no.3, 2018년, pp.1047 - 1062  

Dehgan, Saadat (Department of Electrical Engineering, Urmia University) ,  Ghobadi, Changiz (Department of Electrical Engineering, Urmia University) ,  Nourinia, Javad (Department of Electrical Engineering, Urmia University) ,  Yang, Jie (College of Telecom and Information Engineering, Nanjing University of Posts and Telecommunications) ,  Gui, Guan (College of Telecom and Information Engineering, Nanjing University of Posts and Telecommunications) ,  Mostafapour, Ehsan (Department of Electrical Engineering, Urmia University)

Abstract AI-Helper 아이콘AI-Helper

In this paper the problem of massive multiple input multiple output (MIMO) channel estimation with sparsity aware adaptive algorithms for $5^{th}$ generation mobile systems is investigated. These channels are shown to be non-stationary along with being sparse. Non-stationarity is a featur...

주제어

참고문헌 (36)

  1. J. Zhang, G. Liu, F. Zhang, L. Tian, N. Sheng, and P. Zhang, "Emerging Challenges to IMT-Advanced Channel Model," IEEE Veh. Technol. Mag., vol. 6, no. 2, pp. 92-100, 2011. 

  2. J. Zhang, D. Dong, Y. Liang, C. Huang, and G. Liu, "Propagation Characteristics of Wideband Relay Channels in Urban Micro-Cell Environment," IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 657-661, 2010. 

  3. J. Zhang, Y. Zhang, Y. Yu, R. Xu, Q. Zheng, and P. Zhang, "3-D MIMO : How Much Does It Meet Our Expectations Observed From Channel Measurements?," IEEE J. Sel. Areas Commun., vol. 35, no. 8, pp. 1887-1903, 2017. 

  4. J. Zhang, "The Interdisciplinary Research of Big Data and Wireless Channel: A Cluster-Nuclei Based Channel Model," China Commun., vol. 13, no. 2, pp. 14-26, 2016. 

  5. R. Cao, F. Gao, and X. Zhang, "An Angular Parameter Estimation Method for Incoherently Distributed Sources Via," IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4493-4503, 2016. 

  6. F. Gao, R. Zhang, and Y.-C. Liang, "Channel Estimation for OFDM Modulated Two-Way Relay Networks," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4443-4455, 2009. 

  7. W. Ma, H. Qu, G. Gui, L. Xu, J. Zhao, and B. Chen, "Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments," J. Franklin Inst., vol. 352, no. 7, pp. 2708-2727, 2015. 

  8. L. Dai, Z. Wang, and Z. Yang, "Compressive sensing based time domain synchronous OFDM transmission for vehicular communications," IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 460-469, 2013. 

  9. L. Dai, Z. Wang, Z. Yang, G. Gui, and F. Adachi, "Reliable and energy-efficient OFDM based on structured compressive sensing," in Proc. of IEEE International Conference on Communications (ICC), Sydney, Australia, 10-14 June 2014, 2014, pp. 1-6. 

  10. J. Kivinen, P. Suvikunnas, L. Vuokko, and P. Vainikainen, "Experimental investigations of MIMO propagation channels," IEEE Antennas Propag. Soc. Int. Symp. (IEEE Cat. No.02CH37313), vol. 3, pp. 206-209, 2002. 

  11. J. Zhang, C. Pan, F. Pei, G. Liu, and X. Cheng, "Three-Dimensional Fading Channel Models: A Survey of Elevation Angle Research," China Commun., vol. 52, no. 6, pp. 218-226, 2014. 

  12. G. Gui and F. Adachi, "Improved least mean square algorithm with application to adaptive sparse channel estimation," EURASIP J. Wirel. Commun. Netw., vol. 2013, no. 1, p. 204, 2013. 

  13. G. Gui, W. Peng, and F. Adachi, "Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region," Int. J. Commun. Syst., vol. 27, no. 11, pp. 3147-3157, 2014. 

  14. G. Gui, L. Xu, and S. Matsushita, "Improved adaptive sparse channel estimation using mixed square/fourth error criterion," J. Franklin Inst., vol. 352, no. 10, pp. 4579-4594, 2015. 

  15. Y. Li, Y. Wang, and T. Jiang, "Sparse Channel Estimation Based on a p -Norm-Like Constrained Least Mean Fourth Algorithm," in Proc. of 2015 International Conference on Wireless Communications & Signal Processing (WCSP) Nanjing, China 15-17 Oct. 2015, 2015, pp. 1-4. 

  16. Y. Li and M. Hamamura, "Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation," Int. J. Adapt. Control Signal Process., no. 9, pp. 1-18, 2015. 

  17. C. Xiao, Y. R. Zheng, and N. C. Beaulieu, "Novel sum-of-sinusoids simulation models for rayleigh and rician fading channels," IEEE Trans. Wirel. Commun., vol. 5, no. 12, pp. 3667-3678, 2006. 

  18. M. F. Pop and N. C. Beaulieu, "Limitations of sum-of-sinusoids fading channel simulators," IEEE Trans. Commun., vol. 49, no. 4, pp. 699-708, 2001. 

  19. M. Agiwal, A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016. 

  20. A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. a. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Commun. Mag., vol. 52, no. May, pp. 26-35, 2014. 

  21. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, 2017. 

  22. S. Chen and J. Zhao, "The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication," IEEE Commun. Mag., vol. 52, no. May, pp. 36-43, 2014. 

  23. J. Zhang, "The interdisciplinary research of big data and wireless channel: A cluster-nuclei based channel model," China Commun., vol. 13, no. 2, pp. 14-26, 2017. 

  24. L. Lu, G. Li, a. L. Swindlehurst, A. Ashikhmin, and R. Zhang, "An overview of massive MIMO: Benefits and challenges," IEEE J. Sel. Top. Signal Process., vol. 8, no. 5, pp. 742-758, 2014. 

  25. M. Wu, B. Yin, G. Wang, C. Dick, J. Cavallaro, and C. Studer, "Large-Scale MIMO Detection for 3GPP LTE: Algorithm and FPGA Implementation," IEEE J. Sel. Top. Signal Process., vol. PP, no. 99, pp. 1-1, 2014. 

  26. C. Turan, M. S. Salman, and A. Eleyan, "A new variable step-size block LMS algorithm for a non-stationary sparse systems," in Proc. of Proceedings of 12th International Conference on Electronics Computer and Computation (ICECCO), 2015, pp. 1-4. 

  27. Y. Chen, Y. Gu, and A. O. Hero III, "Sparse LMS for system identification," in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing,Taipei, Taiwan, 19-24 April 2009, 2009, pp. 3125-3128. 

  28. G. Gui and F. Adachi, "Improved least mean square algorithm with application to adaptive sparse channel estimation," Eurasip J. Wirel. Commun. Netw., vol. 2013, no. 1, 2013. doi:10.1186/1687-1499-2013-204. 

  29. G. Gui and F. Adachi, "Sparse least mean fourth filter with zero-attracting L1-norm constraint," in Proc. of 9th International Conference on Information, Communications and Signal Processing (ICICS), Tainan, Taiwan, December 10-13, 2013, 2013, pp. 1-5. 

  30. G. Gui and F. Adachi, "Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region," Int. J. Commun. Syst., vol. 27, no. 11, 2014. 

  31. J. Liu and S. L. Grant, "Proportionate adaptive filtering for block-sparse system identification," IEEE/ACM Trans. Speech Lang. Process., vol. 24, no. 4, pp. 623-630, 2016. 

  32. Y. Li, Y. Wang, and T. Jiang, "Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation," Signal Processing, vol. 128, pp. 243-251, 2016. 

  33. Y. Li, Z. Jin, Y. Wang, and R. Yang, "A robust sparse adaptive filtering algorithm with a correntropy induced metric constraint for broadband multi-path channel estimation," Entropy, vol. 18, no. 10, p. 380, 2016. 

  34. A. S. Parameter and F. Penalized, "A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification," Entropy, vol. 1, no. 45, pp. 1-16, 2017. 

  35. S. Lim, "Combined LMS/F algorithm," Electroincs Lett., vol. 33, no. 6, pp. 467-468, 1997. 

  36. G. Gui, A. Mehbodniya, and F. Adachi, "Least mean square/fourth algorithm for adaptive sparse channel estimation," in Proc. of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), London, UK, 8-11 Sept. 2013, 2013, pp. 296-300. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로