$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band 원문보기

Current optics and photonics, v.2 no.3, 2018년, pp.226 - 232  

Hong, Seongjin (Institute of Physics and Applied Physics, Yonsei University) ,  Oh, Kyunghwan (Institute of Physics and Applied Physics, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study we focus on its asymmetric structure for split LP11 modes, such that applying its unique, asymmetric triangular structure can break the circular symmetry of LP modes in a fiber and split the degenerate LP11 mode into two. We further investigate the guiding properties of a TMC-HOF in the C+L bands by controlling its structural parameters.
  • To confirm that our proposed waveguide structure allows three-mode guidance when R = 33 μm at Δn = 0.5%, we carry out a numerical calculation of the effective indices of modes LP01, LP11a, and LP11b.
  • Using a fully vectorial finite-element method, we optimized the structural size of the designed TMC-HOF so that it can guide the three LP modes with Δneff greater than 10-4 in the C and L bands.
  • mode into two. We further investigate the guiding properties of a TMC-HOF in the C+L bands by controlling its structural parameters. Numerical modal analyses are performed using a fully vectorial finite-element method (FEM) with the perfectly matched layer (PML) boundary condition [20].

이론/모형

  • In reference to silica, the triangular core has an index difference Δn = 0.5%, the optical properties being calculated using the Sellmeier equation for GeO2-doped silica glass [21].
  • 1(a). The cladding material is pure silica, the optical dispersion of which was calculated using the Sellmeier equation for vitreous silica glass. In reference to silica, the triangular core has an index difference Δn = 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, and O. Mattes, "A throughput-optimized optical network for data-intensive computing," IEEE Micro 34, 52-63 (2014). 

  2. E. Agrell, M. Karlsson, A. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, and B. J. Eggleton, "Roadmap of optical communications," J. Opt. 18, 063002 (2016). 

  3. M. Gu, X. Li, and Y. Cao, "Optical storage arrays: a perspective for future big data storage," Light: Sci. Appl. 3, e177 (2014). 

  4. J. Feng and X. Zhao, "Performance analysis of FSO communication systems with photodetector multiplexing," Curr. Opt. Photon. 1, 440-455 (2017). 

  5. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010). 

  6. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, "Capacity limits of information transport in fiber-optic networks," Phys. Rev. Lett. 101, 163901 (2008). 

  7. C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, "Supermodes for optical transmission," Opt. Express 19, 16653-16664 (2011). 

  8. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, "Long distance transmission in few-mode fibers," Opt. Express 18, 13250-13257 (2010). 

  9. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, "Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber," Opt. Express 19, 16576-16592 (2011). 

  10. D. M. Marom, and M. Blau, "Switching solutions for WDM-SDM optical networks," IEEE Commun. Mag. 53, 60-68 (2015). 

  11. B. Zhu, T. Taunay, M. Yan, J. Fini, M. Fishteyn, E. Monberg, and F. Dimarcello, "Seven-core multicore fiber transmissions for passive optical network," Opt. Express 18, 11117-11122 (2010). 

  12. A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, and K. Poturaj, "Hole-assisted multicore optical fiber for next generation telecom transmission systems," Appl. Phys. Lett. 105, 081106 (2014). 

  13. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, "Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler," in Proc. Optical Fiber Communication Conference (Optical Society of America2011), p. OWA4. 

  14. P. Sillard, M. Bigot-Astruc, and D. Molin, "Few-mode fibers for mode-division-multiplexed systems," J. Lightw. Technol. 32, 2824-2829 (2014). 

  15. P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, "Few-mode fiber for uncoupled mode-division multiplexing transmissions," in Proc. European Conference and Exposition on Optical Communications (Optical Society of America 2011), p. Tu. 5. LeCervin. 7. 

  16. N. Riesen, J. D. Love, and J. W. Arkwright, "Few-mode elliptical-core fiber data transmission," IEEE Photon. Technol. Lett. 24, 344 (2012). 

  17. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, "Design of three-spatial-mode ring-core fiber," J. Lightw. Technol. 32, 1337-1343 (2014). 

  18. W. Ha, S. Lee, J. Kim, Y. Jeong, K. Oh, J. Kobelke, K. Schuster, S. Unger, A. Schwuchow, and J. K. Kim, "A micro-structured aperture made of a hollow triangular-core fiber for novel beam shaping," Opt. Express 18, 20918-20925 (2010). 

  19. S. Lee, W. Ha, J. Kobelke, K. Schuster, S. Unger, and K. Oh, "Multicorelike guidance in a triangular-core hollow optical fiber and spectral evolution of its eigenmode degeneracy," Opt. Lett. 37, 4759-4761 (2012). 

  20. Y. S. Lee, C. G. Lee, Y. Jung, M.-K. Oh, and S. Kim, "Highly birefringent and dispersion compensating photonic crystal fiber based on double line defect core," J. Opt. Soc. Korea 20, 567-574 (2016). 

  21. B. Brixner, "Refractive-index interpolation for fused silica," J. Opt. Soc. Am. 57, 674-676 (1967). 

  22. M. Park, H. E. Arabi, S. Lee, and K. Oh, "Independent control of birefringence and chromatic dispersion in a photonic crystal fiber using two hollow ring defects," Opt. Commun. 284, 4914-4919 (2011). 

  23. K. Okamoto, Fundamentals of optical waveguides (Academic press, 2010). 

  24. E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986). 

  25. A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightw. Technol. 3, 1135-1146 (1985). 

  26. O. Bands, B. Laurent, and G. Draka, "From O to L: The future of optical-wavelength bands," Broadband Properties, 83-85 (2008). 

  27. K. Oh and U.-C. Paek, Silica optical fiber technology for devices and components: design, fabrication, and international standards (John Wiley & Sons, 2012). 

  28. M. R. Hasan, M. I. Hasan, and M. S. Anower, "Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands," Appl. Opt. 54, 9456-9461 (2015). 

  29. L. Gruner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle Jr, and B. Palsdottir, "Few mode transmission fiber with low DGD, low mode coupling, and low loss," J. Lightw. Technol. 30, 3693-3698 (2012). 

  30. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, "Design of three-spatial-mode ring-core fiber," J. Lightw. Technol. 32, 1337-1343 (2014). 

  31. F. Ferreira, D. Fonseca, and H. Silva, "Design of few-mode fibers with arbitrary and flattened differential mode delay," IEEE Photon. Technol. Lett. 25, 438-441 (2013). 

  32. Y. S. Lee, C. G. Lee, and S. Kim, "Dispersion compensating photonic crystal fiber using double-hole assisted core for high and uniform birefringence," Optik 147, 334-342 (2017). 

  33. S. M. A. Razzak and Y. Namihira, "Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding," J. Lightw. Technol. 26, 1909-1914 (2008). 

  34. W. H. Reeves, J. C. Knight, and P. S. J. Russell, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Electron. Lett. 38, 546-547 (2002). 

  35. M. Ye, Y. Yang, W. Duan, and M. Yang, "Measure and redress of mode field diameter of polarization maintaining photonic crystal fibers," in Proc. 8th IEEE International Symposium on Instrumentation and Control Technology (ISICT), 101-104 (2012). 

  36. S. Choi, K. Oh, W. Shin, and U. C. Ryu, "Low loss mode converter based on adiabatically tapered hollow optical fibre," Electron. Lett. 37, 823-825 (2001). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로