$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

대마씨(Hemp seed; seed of Cannabis sativa L.)는 삼과에 속하는 1년생 초본 식물이며, 면역력 증가, 동맥 경화증, 변비, 고지혈증 예방, 항염증제, 항암제 등 다양한 생물학적 기능을 수행하는 것으로 보고되었다. 본 연구에서는 유산균을 이용한 발효 대마씨 추출물의 효능를 조사하였다. 그 결과, Staphylococcus aureus에 대한 항균 활성은 발효하지 않은 대마씨 추출물에 비해 현저히 증가되었으며, 특히 Bacillus cereus에 대하여 발효한 대마씨 추출물에서 항균 활성이 새롭게 나타났다. 또한, 유산균 발효 대마씨 추출물의 총 폴리페놀 함량과 DPPH 라디칼 소거능, SOD 유사 활성, ${\alpha}$-glucosidase 저해 활성은 발효하지 않은 대마씨 추출물에 비해 각각 증가됨을 확인하였다. 추가적으로 멜라닌 증가 물질로 알려진 tyrosinase의 저해 활성도 발효하지 않은 유산균에 비해 증가되었다. 이러한 결과들을 통해 유산균으로 발효한 대마씨 추출물은 항산화, ${\alpha}$-glucosidase 저해 활성 및 tyrosinase 저해 활성을 촉진시키며, 따라서 유산균으로 발효한 대마씨 추출물을 이용한 기능성 소재 및 식품 개발로의 활용이 가능할 것으로 기대한다.

Abstract

Hemp seed (Cannabis sativa L.; HS), an annual herbaceous plant in the Cannabis genus, has been reported to play various biological functions in immunity increase, atherosclerosis, constipation, hyperlipidemia prevention, anti-inflammatory, and anti-cancer. In recently years, as superfood, the growing interest in the health care benefits of hemp seed has led to increased consumption. In this study, we investigated the effect of an ethanol extract of HS fermented with lactic acid bacteria (Lactobacillus plantarum KCTC 3107, L. plantarum KCTC 3108, L. brevis BHN-LAB128, L. paracasei BHN-LAB129). An antibacterial activity against Staphylococcus aureus and Bacillus cereus were 13.99 mm and 15.17 mm, respectively. The ethanol extracts of fermented hemp seed by lactic acid bacteria that the contents of total polyphenol, total flavonoid content, DPPH radical scavenging activity, SOD-like activity, and ${\alpha}$-glucosidase inhibitory activity were increased compared to non-fermented hemp seed. Also, tyrosinase inhibitory activity of the fermented hemp seed (FHS), known to melanin increasing substance was increased. In these results, we suggested that FHS have effects of anti-oxidant, ${\alpha}$-glucosidase inhibitory activity, and tyrosinase inhibitory activity. Hence, we proposed that FHS has possible to development as functional foods and cosmetics.

본문요약 

문제 정의
  • 따라서, 본 연구를 통하여 다양한 생리 활성을 보이는 대마 씨에 유산균을 접종(FHS)하여 발효한 추출물의 생리 활성 및 다양한 기능성 변화를 탐색하여 새로운 활용방안을 확인해 보고자 한다.

    따라서, 본 연구를 통하여 다양한 생리 활성을 보이는 대마 씨에 유산균을 접종(FHS)하여 발효한 추출물의 생리 활성 및 다양한 기능성 변화를 탐색하여 새로운 활용방안을 확인해 보고자 한다.

본문요약 정보가 도움이 되었나요?

저자의 다른 논문

참고문헌 (42)

  1. 1. Abdel-Malek, Z., Swope, V. B., Suzuki, I., Akcali, C., Harriger, M. D., Boyce, S. T., Urabe, K. and Hearing, V. J. 1995. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. USA. 92, 1789-1793. 
  2. 2. Baron, A. D. 1998. Postprandial hyperglycemia and ${\alpha}$ -glucosidase inhibitors. Diabetes Res. Clin. Pract. 40, 51-55. 
  3. 3. Bartkiene, E., Schleining, G., Krungleviciute, V., Zadeike, D., Zavistanaviciute, P., Dimaite, I., Kuzmaite, I., Riskeviciene, V. and Juodeikiene, G. 2016. Development and quality evaluation of lacto-fermented product based on hulled and not hulled hempseed (Cannabis sativa L.). LWT-Food Science and Technology 72, 544-551. 
  4. 4. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. 
  5. 5. Cabanes, J., Chazarra, S. and Garcia-Carmona, F. 1994. Kojic acid, a cosmetic skin whitening agent, is a slow binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46, 982-985. 
  6. 6. Callaway, J. C. 2004. Hempseed as a nutritional resource: an overview. Euphytica 140, 65-72. 
  7. 7. Choi, Y. M., Gu, J. B., Kim, M. H. and Lee, J. S. 2008. Antioxidant and antiproliferative activities of methanolic extracts from thirty korean medicinal plants. Food Sci. Biotechnol. 17, 1235-1239. 
  8. 8. Cherdshewasart, W. and Sutjit, W. 2008. Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobate tubers. Phytomedicine 15, 38-43. 
  9. 9. Hong, S. H., Kandhasamy, S., Joo, T. W., Lim, C. M., Cho, H. M., Kim, S. M., Kim, G. Y. and Jhoo, J. W. 2015. Ethanol and supercritical fluid extracts of hemp seed (Cannabis sativa L.) increase gene expression of antioxidant enzymes in HepG2 cells. Asian Pacific J. Rep. 4, 147-152. 
  10. 10. Jeon, J. M., Choi, S. K., Kim, Y. J., Jang, S. J., Cheon, J. W. and Lee, H. S. 2011. Antioxidant and antiaging effect of ginseng berry extract fermented by lactic acid bacteria. J. Soc. Cosmet. Sci. 1, 75-81. 
  11. 11. Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoid contents in mulberry and they scavenging effects on superoxide radicals. Food Chem. 64, 555-559. 
  12. 12. Jung, S. W., Lee, N. K., Kim, S. J. and Han, D. S. 1995. Screening of tyrosinase inhibitor from plants. J. Kor. Food Sci. Technol. 27, 891-896. 
  13. 13. Kanmani, P., Satish Kumar, R., Yuvaraj, N., Paari, K. A., Pattukumar, V. and Arul, V. 2013. Probiotics and its functionally valuable products (Review). Crit. Rev. Food Sci. Nutr. 53, 641-658. 
  14. 14. Kim, H. J., Jun, B. S., Kim, S. K., Cha, J. Y. and Cho, Y. S. 2000. Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctiorius L.). J. Kor. Soc. Food Sci. Nutr. 29, 1127-1132. 
  15. 15. Kim, K. B., Yoo, K. H., Park, H. Y. and Jeong, J. M. 2006. Anti-oxidative activities of commercial edible plant extracts distributed in Korea. J. Kor. Soc. Appl. Biol. Chem. 49, 328-333. 
  16. 16. Kim, S. J., Heo, M. Y., Bae, K. H., Kang, S. S. and Kim, H. P. 2003. Tyrosinase inhibitory activity of plant extract (III): Fifty korean indigenous plants. J. Applied Phamacol. 11, 245-248. 
  17. 17. Koh, D. H. 1990. A study on the composition of fatty acids of hempseed. J. Kor. Food and Nutr. 2, 201-206. 
  18. 18. Kriese, U., Schumann, E., Weber, W. E., Beyer, M., Bruhl, L. and Matthaus, B. 2004. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. Genotypes. Euphytica 137, 339-351. 
  19. 19. Kitani, K., Minami, C., Yamamoto, T., Kanai, S., Ivy, G. O. and Carrillo, M. C. 2002. Pharmacological interventions in aging and age-associated disorders: potentials of propargylamines for human use. Ann N Y Acad. Sci. 959, 295-307. 
  20. 20. Kozela, E., Juknat, A. and Vogel, Z. 2017. Modulation of astrocyte activity by cannabidiol, a nonpsychoactive cannabinoid. Int. J. Mol. Sci. 31, 18. 
  21. 21. Kwon, W. J., Lee, H. K., Park, H. J., Kwon, T. O., Choi, H. R. and Song, J. Y. 2011. Screening of biological activities to different ethanol extracts of Rubus coreanus Miq. J. Kor. Medicinal Crop Sci. 19, 325-333. 
  22. 22. Lee, K. H., Rhee, K. H., Kim, B. S., Choi, Y. H. and Kim, C. H. 2013. Sleep inducing effect of Gastrodia elata fermented with lactic acid bacteria. J. Kor. Pharmacogn. 44, 281-285. 
  23. 23. Lee, J. B., Bae, J. S., Son, I. K., Jeon, C. P., Lee, E. H., Joo, W. H. and Kwon, G. S. 2014. Antioxidant and ACE inhibiting activities of sugared-buchu (Allium ampeloprasum L. var. porum J. Gay) fermented with lactic acid bacteria. J. Life Sci. 6, 671-676. 
  24. 24. Mailleux, P., Preud'homme, X., Albala, N., Vanderwinden, J. M. and Vanderhaeghen, J. J. 1994. ${\Delta}^9$ -Tetrahydrocannabinol regulates gene expression of the growth factor pleiotrophin in the forebrain. Neurosci. Lett. 175, 25-27. 
  25. 25. Mannucci, C., Navarra, M., Calapai, F., Spagnolo, E. V., Busardo, F. P., Cas, R. D., Ippolito, F. M. and Calapai, G. 2017. Neurological aspects of medical use of cannabidiol. CNS Neurol. Disord. Drug Targets 16, 541-553. 
  26. 26. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474. 
  27. 27. Masamoto, Y., Ando, H., Murata, Y., Shimoishi, Y., Tada, M. and Takahata, K. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci. Biotechnol. Biochem. 67, 631-634. 
  28. 28. Masood, M. I., Qadir, M. I., Shirazi, J. H. and Khan, I. U. 2011. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 37, 91-98. 
  29. 29. Moreno-Sanz, G. 2016. Can you pass the acid test? Critical review and novel therapeutic perspectives of ${\Delta}^9$ -Tetrahydrocannabinolic acid A. Cannabis Cannabinoid Res. 1, 124-130. 
  30. 30. Park, Y. H., Lim, S. H., Kim, H. Y., Park, M. H., Lee, K. J., Kim, K. H., Kim, Y. G. and Ahn, Y. S. 2011. Biological activities of extracts from flowers of Angelica gigas Nakai. J. Kor. Soc Food Sci. Nutr. 40, 1079-1085. 
  31. 31. Roberta, C., Sonia, T., Teresa, F., Fiore Pasquale, N., Maria Vittoria, M., Cristina, G. and Nevio, P. 2013. Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose 20, 547-557. 
  32. 32. Sassone-Corsi, P. 1998. Coupling gene expression to cAMP signalling: role of CREB and CREM. Int. J. Biochem. Cell Biol. 30, 27-38. 
  33. 33. Shinde, J., Taldone, T., Barletta, M., Kunaparaju, N., Hu, B., Kumar, S., Placido, J. and William, Z. S. 2008. ${\alpha}$ -Glucosidase inhibitory activity of Syaygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohydr Res. 343, 1278-1281. 
  34. 34. Singleton, V. L. and Rossi, J. A. 1965. A colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144-158. 
  35. 35. Smeriglio, A., Galati, E. M., Monforte, M. T., Lanuzza, F., D'Angelo, V. and Circosta, C. 2016. Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from finola cultivar of Cannabis sativa L. Phytother. Res. 30, 1298-307. 
  36. 36. Sue-Siang, T., Alaa El-Din, B. and John, B. 2014. Antioxidative polyphenols from defatted oilseed cakes: Effect of solvents. Antioxidants 3, 67-80. 
  37. 37. Tibbot, B. K. and Skadsen, R. W. 1996. Molecular cloning and characterization of a gibberellin-inducible, putative ${\alpha}$ -glucosidase gene from barley. Plant Mol. Biol. 30, 229-241. 
  38. 38. Vile, G. F. and Tyrrell, R. M. 1995. UVA radiation-induced oxidative damage to lipid and protein in vitro and in human skin fibroblast is dependent on iron and singlet oxygen. Free Radic. Biol. Med. 18, 721-730. 
  39. 39. Vilela, L. R., Lima, I. V., Kunsch, E. B., Pinto, H. P. P., de Miranda, A. S., Vieira, E. L. M., de Oliveira, A. C. P., Moraes, M. F. D., Teixeira, A. L. and Moreira, F. A. 2017. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: Pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav. 75, 29-35. 
  40. 40. Yang, Y. S., Li, N., Deng, X. M. and Wu, C. X. 2004. MC1R--the key gene in mammalian melanin synthesis. Yi Chuan. 26, 544-550. 
  41. 41. Yi, M. R., Kang, C. H. and Bu, H. J. 2017. Anti-inflammatory and tyrosinase inhibition effects of Amaranth (Amaranthus spp L.) seed extract. Kor. J. Plant Res. 30, 144-151. 
  42. 42. Yuk, H. J., Noh, G. M., Choe, J. S., Kwon, O. K., Hong, S. Y., Kang, S. S., Cho, K. M. and Park, D. S. 2015. ${\alpha}$ -Glucosidase inhibitory effect of vicine and ${\alpha}$ -eleostearic acid from the seeds of Momordica charantia. Kor. J. Environ. Agric. 34, 57-63. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

DOI 인용 스타일

"" 핵심어 질의응답