$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Monitoring and Analyzing Water Area Variation of Lake Enriquillo, Dominican Republic by Integrating Multiple Endmember Spectral Mixture Analysis and MODIS Data 원문보기

Ecology and resilient infrastructure, v.5 no.2, 2018년, pp.59 - 71  

Kim, Sang Min (School of Civil and Environmental Engineering, Yonsei University) ,  Yoon, Sang Hyun (School of Civil and Environmental Engineering, Yonsei University) ,  Ju, Sungha (School of Civil and Environmental Engineering, Yonsei University) ,  Heo, Joon (School of Civil and Environmental Engineering, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

Lake Enriquillo, the largest lake in the Dominican Republic, recently has undergone unusual water area changes since 2001 thus it has been affected seriously by local community's livelihood. Earthquakes and seismic activities of Hispaniola plate tectonic coupled with human activities and climate cha...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The objectives of this study were to extract water area in a 2001-2012 time-series for mapping and assessment of the spatial patterns of the water area changes of Lake Enriquillo in the Dominican Republic. This saline, terminal lake, the largest and most important in the Dominican Republic, is located on the central plateau of Hispaniola, along with the border with Haiti.
  • The primary objective of this study was to determine, by MESMA, the variation of Lake Enriquillo water area between 2001 and 2012. To explain the spatial patterns of fractional water area, we obtained both RGB image results and MESMA results.
본문요약 정보가 도움이 되었나요?

참고문헌 (71)

  1. Adams, J.B. and Smith, M.O. 1986. Architecture: Shade and shadow in geobotanical mapping (abs.). Remote Sensing for Exploration Geology, Fifth Thamatic Conference. 

  2. Adams, J.B., Smith, M.O., and Gillespie, A.R. 1993. Imaging spectroscopy: Interpretation based on spectral mixture analysis. Remote geochemical analysis: Elemental and mineralogical composition 7: 145-166. 

  3. Archibold, R.C. 2014. Rising Tide Is a Mystery That Sinks Island Hopes. The New York Times. Retrieved from http://www.nytimes.com/2014/01/12/world/americas/rising-tide-is-a-mystery-that-sinks-island-hopes.html?_r1 

  4. Arroyo, L. 2014. "El agua se lo llevo todo": el misterio de los lagos crecientes del Caribe. BBC. Retrieved from http://www.bbc.co.uk/mundo/noticias/2014/01/140114_ciencia_america_latina_lago_crece_republica_dominicana_lav.shtml. 

  5. Bedini, E., Van Der Meer, F., and Van Ruitenbeek, F. 2009. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. International Journal of Remote Sensing 30(2): 327-348. 

  6. Boardman, J.W. 1993. Automating spectral unmixing of AVIRIS data using convex geometry concepts. Paper presented at the Summaries 4th Annu. JPL Airborne Geoscience Workshop. 

  7. Boardman, J.W., Kruse, F.A., and Green, R.O. 1995. Mapping target signatures via partial unmixing of AVIRIS data. 

  8. Bobylev, N. 2009. Mainstreaming sustainable development into a city's Master plan: A case of Urban Underground Space use. Land Use Policy 26(4): 1128-1137. 

  9. Buck, D.G., Brenner, M., Hodell, D.A., Curtis, J.H., Martin, J.B., and Pagani, M. 2005. Physical and chemical properties of hypersaline Lago Enriquillo, Dominican Republic. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 29(2): 725-731. 

  10. Chen, X. and Li, L. 2008. A comparison of spectral mixture analysis methods for urban landscape using Landsat ETM+ data: Los Angeles, CA. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing, China 635-640. 

  11. Cleto, J.F. and Luo, M. 2013. Water Balance Analysis: Lake Enriquillo Sensor Network Expansion & Analysis of Lake Bathymetric. Retrieved from. 

  12. Comarazamy, D.E., Gonzalez, J.E., Moshary, F., and Piasecki, M. 2015. On the Hydrometeorological Changes of a Tropical Water Basin in the Caribbean and Its Sensitivity to Midterm Changes in Regional Climate. Journal of Hydrometeorology 16(3): 997-1013. doi:10.1175/Jhm-D-14-0083.1. 

  13. De Asis, A.M. and Omasa, K. 2007. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data. Isprs Journal of Photogrammetry and Remote Sensing 62(4): 309-324. doi:DOI 10.1016/j.isprsjprs.2007.05.013. 

  14. Dennison, P.E., Charoensiri, K., Roberts, D.A., Peterson, S.H., and Green, R.O. 2006. Wildfire temperature and land cover modeling using hyperspectral data. Remote Sensing of Environment 100(2): 212-222. 

  15. Dennison, P.E., Halligan, K.Q., and Roberts, D.A. 2004. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sensing of Environment 93(3): 359-367. 

  16. Dennison, P.E. and Roberts, D.A. 2003. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sensing of Environment 87(2): 123-135. 

  17. Dennison, P.E., Roberts, D.A., and Reggelbrugge, J.C. 2000. Characterizing chaparral fuels using combined hyperspectral and synthetic aperture radar data. Paper presented at the Proc. 9th AVIRIS Earth Science Workshop. 

  18. Dominican-Today. 2013. Villagers uprooted by Enriquillo lake demand more official action. Dominican Today. Retrieved from http://www.dominicantoday.com/dr/poverty/2013/7/8/48220/Villagers-uprooted-by-Enriquillo-lake-demand-more-official-action. 

  19. Du, Y., Xue, H.P., Wu, S.J., Ling, F., Xiao, F., and Wei, X.H. 2011. Lake area changes in the middle Yangtze region of China over the 20th century. Journal of Environmental Management 92(4): 1248-1255. doi: 10.1016/j.jenvman.2010.12.007. 

  20. Eastman, J. and Laney, R. 2002. Bayesian Soft Classification for Su b-Pixel Analysis: A Critical Evaluation. 

  21. Eckmann, T.C., Roberts, D.A., and Still, C.J. 2008. Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS. Remote Sensing of Environment 112(10): 3773-3783. 

  22. Fisher, P.F. and Pathirana, S. 1990. The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sensing of Environment 34(2): 121-132. 

  23. Foody, G.M. and Arora, M.K. 1996. Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications. Pattern Recognition Letters 17(13): 1389-1398. 

  24. Franke, J., Roberts, D.A., Halligan, K., and Menz, G. 2009. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sensing of Environment 113(8): 1712-1723. 

  25. Gonzalez, J., Lin, L., Walker, K., Bouton, G., and Molina, A. 2010. Growth of Lago Enriquillo. Retrieved from. 

  26. Hope, A.S., Coulter, L.L., and Stow, D.A. 1999. Estimating lake area in an Arctic landscape using linear mixture modelling with AVHRR data. International Journal of Remote Sensing, 20(4): 829-835. doi: 10.1080/014311699213253. 

  27. Huang, S.F., Li, J.G., and Xu, M. 2012. Water surface variations monitoring and flood hazard analysis in Dongting Lake area using long-term Terra/MODIS data time series. Natural Hazards, 62(1): 93-100. doi: 10.1007/s11069-011-9921-6. 

  28. Huguenin, R.L., Karaska, M.A., Van Blaricom, D., and Jensen, J.R. 1997. Subpixel classification of bald cypress and tupelo gum trees in Thematic Mapper imagery. Photogrammetric Engineering and Remote Sensing 63(6): 717-724. 

  29. Hui, F. M., Xu, B., Huang, H.B., Yu, Q., and Gong, P. 2008. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. International Journal of Remote Sensing 29(20): 5767-5784. doi: 10.1080/01431160802060912. 

  30. Hung, M.C. and Ridd, M.K. 2002. A subpixel classifier for urban land-cover mapping based on a maximum-likelihood approach and expert system rules. Photogrammetric Engineering and Remote Sensing 68(11): 1173-1180. 

  31. Jain, S.K., Singh, R., Jain, M., and Lohani, A. 2005. Delineation of flood-prone areas using remote sensing techniques. Water resources management 19(4): 333-347. 

  32. Kumar, A., Ghosh, S.K., and Dadhwal, V.K. 2007. Full fuzzy land cover mapping using remote sensing data based on fuzzy c-means and density estimation. Canadian Journal of Remote Sensing 33(2): 81-87. doi:10.5589/m07-011. 

  33. Li, L. and Mustard, J.F. 2003. Highland contamination in lunar mare soils: Improved mapping with multiple end-member spectral mixture analysis (MESMA). Journal of geophysical research 108(E6): 5053. 

  34. Li, L., Ustin, S., and Lay, M. 2005. Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA. International Journal of Remote Sensing 26(23): 5193-5207. 

  35. Lu, D., Moran, E., and Batistella, M. 2003. Linear mixture model applied to Amazonian vegetation classification. Remote Sensing of Environment 87(4): 456-469. doi: 10.1016/j.rse.2002.06.001. 

  36. Ma, M., Wang, X., Veroustraete, F., and Dong, L. 2007. Change in area of Ebinur Lake during the 1998-2005 period. International Journal of Remote Sensing 28(24): 5523-5533. 

  37. Mertens, K.C., Verbeke, L.P.C., Westra, T., and De Wulf, R.R. 2004. Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients. Remote Sensing of Environment 91(2): 225-236. doi: 10.1016/j.rse.2004.03.003. 

  38. Michishita, R., Gong, P., and Xu, B. 2012. Spectral mixture analysis for bi-sensor wetland mapping using Landsat TM and Terra MODIS data. International Journal of Remote Sensing, 33(11): 3373-3401. doi: 10.1080/01431161.2011.611185. 

  39. Michishita, R., Jiang, Z., Gong, P., and Xu, B. 2012. Bi-scale analysis of multitemporal land cover fractions for wetland vegetation mapping. ISPRS Journal of Photogrammetry and Remote Sensing 72: 1-15. 

  40. Myint, S.W. 2006. Urban vegetation mapping using sub-pixel analysis and expert system rules: A critical approach. International Journal of Remote Sensing 27(13): 2645-2665. doi:10.1080/01431160500534630. 

  41. Myint, S.W. and Okin, G.S. 2009. Modelling land­cover types using multiple endmember spectral mixture analysis in a desert city. International Journal of Remote Sensing 30(9): 2237-2257. 

  42. Nascimento, J.M.P. and Dias, J.M.B. 2005. Vertex component analysis: A fast algorithm to unmix hyperspectral data. Geoscience and Remote Sensing, IEEE Transactions on 43(4): 898-910. 

  43. Okin, G.S., Roberts, D.A., Murray, B., and Okin, W.J. 2001. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sensing of Environment 77(2): 212-225. 

  44. Painter, T.H., Dozier, J., Roberts, D.A., Davis, R.E., and Green, R.O. 2003. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment 85(1): 64-77. 

  45. Painter, T.H., Roberts, D.A., Green, R.O., and Dozier, J. 1998. The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sensing of Environment 65(3): 320-332. 

  46. Poteau, D., Romero Luna, E., Walter, M., and Steenhuis, T. 2011. Water Level Fluctuations of Lake Enriquillo and Lake Saumatre in Response to Environmental Changes. Paper presented at the AGU Fall Meeting Abstracts. 

  47. Powell, R.L., Roberts, D.A., Dennison, P.E., and Hess, L.L. 2007. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment 106(2): 253-267. 

  48. Pu, R., Gong, P., Michishita, R., and Sasagawa, T. 2008. Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data. Remote Sensing of Environment 112(3): 939-954. 

  49. Pu, R., Li, Z., Gong, P., Csiszar, I., Fraser, R., Hao, W.M., and Weng, F. 2007. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data. Remote Sensing of Environment 108(2): 198-208. 

  50. Ramirez. 2012. La vida despues del agua. http://www.diariolibre.com. 

  51. Rashed, T. 2008. Remote sensing of within-class change in urban neighborhood structures. Computers, Environment and Urban Systems 32(5): 343-354. 

  52. Rashed, T. and Weeks, J. 2003. Exploring the spatial association between measures from satellite imagery and patterns of urban vulnerability to earthquake hazards. Int Arch Photogramm Remote Sens Spat Inf Sci 34(7): W9. 

  53. Rashed, T., Weeks, J. R., Roberts, D., Rogan, J., and Powell, R. 2003. Measuring the physical composition of urban morphology using multiple endmember spectral mixture models. Photogrammetric Engineering and Remote Sensing 69(9): 1011-1020. 

  54. Rashed, T., Weeks, J.R., Stow, D., and Fugate, D. 2005. Measuring temporal compositions of urban morphology through spectral mixture analysis: toward a soft approach to change analysis in crowded cities. International Journal of Remote Sensing 26(4): 699-718. 

  55. Roach, J.K., Griffith, B., and Verbyla, D. 2012. Comparison of three methods for long-term monitoring of boreal lake area using Landsat TM and ETM plus imagery. Canadian Journal of Remote Sensing 38(4): 427-440. 

  56. Roberts, D., Gardner, M., Church, R., Ustin, S., Scheer, G., and Green, R. 1998. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment 65(3): 267-279. 

  57. Small, C. 2001. Multiresolution analysis of urban reflectance. Paper presented at the Remote Sensing and Data Fusion over Urban Areas, IEEE/ISPRS Joint Workshop 2001. 

  58. Smith, M.O., Johnson, P.E., and Adams, J.B. 1985. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. Paper presented at the Lunar and Planetary Science Conference Proceedings. 

  59. Smith, M.O., Ustin, S.L., Adams, J.B., and Gillespie, A.R. 1990. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sensing of Environment 31(1): 1-26. 

  60. Song, C. 2005. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sensing of Environment 95(2): 248-263. doi: 10.1016/j.rse.2005.01.002. 

  61. Sonnentag, O., Chen, J., Roberts, D., Talbot, J., Halligan, K., and Govind, A. 2007. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing. Remote Sensing of Environment 109(3): 342-360. 

  62. Tang, J., Wang, L., and Myint, S.W. 2007. Improving urban classification through fuzzy supervised classification and spectral mixture analysis. International Journal of Remote Sensing 28(18): 4047-4063. doi:10.1080/01431160701227687. 

  63. Tompkins, S., Mustard, J.F., Pieters, C.M., and Forsyth, D.W. 1997. Optimization of endmembers for spectral mixture analysis. Remote Sensing of Environment 59(3): 472-489. 

  64. Wang, F. 1990. Fuzzy supervised classification of remote sensing images. Geoscience and Remote Sensing, IEEE Transactions on 28(2): 194-201. 

  65. Weiguo, L., Seto, K.C., Wu, E.Y., Gopal, S., and Woodcock, C.E. 2004. ART-MMAP: a neural network approach to subpixel classification. Geoscience and Remote Sensing, IEEE Transactions on 42(9): 1976-1983. doi:10.1109/TGRS.2004.831893 

  66. Wu, C. and Murray, A.T. 2003. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment 84(4): 493-505. 

  67. Xian, G. 2006. Assessing urban growth with sub-pixel impervious surface coverage (pp. 179): Taylor & Francis Group: Boca Raton, FL. 

  68. Xu, H.Q. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14): 3025-3033. 

  69. Yang, X. and Liu, Z. 2005. Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Computers, Environment and Urban Systems 29(5): 524-540. 

  70. York, T.C.C.O.N. 2015. The hispaniola lakes project. Retrieved from http://hispaniola-lakes.ccny.cuny.edu/hispaniola/data/ 

  71. Zhang, Y. 2000. A method for continuous extraction of multispectrally classified urban rivers. Photogrammetric Engineering and Remote Sensing 66(8): 991-999. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로