$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A water treatment case study for quantifying model performance with multilevel flow modeling 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.50 no.4, 2018년, pp.532 - 541  

Nielsen, Emil K. (Department of Electrical Engineering, Technical University of Denmark) ,  Bram, Mads V. (Department of Energy Technology, Aalborg University) ,  Frutiger, Jerome (Department of Chemical Engineering, Technical University of Denmark) ,  Sin, Gurkan (Department of Chemical Engineering, Technical University of Denmark) ,  Lind, Morten (Department of Electrical Engineering, Technical University of Denmark)

Abstract AI-Helper 아이콘AI-Helper

Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models ap...

주제어

참고문헌 (22)

  1. J.E. Larsson, Real-time root cause analysis with multilevel flow models, in: International Workshop on Principles of Diagnosis, Stockholm, Sweden, 2009, pp. 3-8. 

  2. J.E. Larsson, B. Ohman, A. Calzada, Real-time root cause analysis for power grids, in: Secutiry and Reliability of Electric Power Systems, Tallinn, Estonia, 2007, pp. 1-7. 

  3. J.E. Larsson, On-line Root Cause Analysis for Nuclear Power Plant Control Rooms, in: Proceedings of the International Symposium on Symbiotic Nuclear Power Systems for the 21st Century, Fukui, Japan, 2007. 

  4. J.E. Larsson, J. DeBor, Real-time root cause analysis for complex technical systems, in: IEEE 8th Human Factors and Power Plants and HPRCT 13th Annual Meeting, 2007, pp. 156-163, https://doi.org/10.1109/HFPP.2007.4413199. 

  5. J.E. Larsson, On-line root cause analysis for large control centers, in: Proceedings of the 8th International Workshop on Electric Power Control Centers, 2005. 

  6. H.P.-J. Thunem, The development of the MFM editor and its applicability for supervision, diagnosis and prognosis, in: Safety, Reliability and Risk Analysis: Beyond the Horizon, 2014, pp. 1807-1814. 

  7. Norwegian Technology Centre, NORSOK I-002, Safety and Automation Systems (SAS). Rev. 2, 2001. 

  8. INSAG, Defence in Depth in Nuclear Safety, 1996. 

  9. A. Gofuku, S. Koide, N. Shimada, Fault tree analysis and failure mode effects analysis based on multi-level flow modeling and causality estimation, in: International Workshop on Safety and Maintenance of Engineering Systems, Tokyo, Japan, 2006, pp. 497-500. 

  10. A. Gofuku, Y. Tanaka, Display of diagnostic information from multiple viewpoints in anomalous situation of complex plants, in: IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, 1999, pp. 642-647, https://doi.org/10.1109/ICSMC.1999.815627. 

  11. A. Gofuku, A. Ohara, A Systematic Fault Tree Analysis Based on Multi-level Flow Modeling, Progress of Nuclear Safety for Symbiosis and Sustainability: Advanced Digital Instrumentation, Control and Information Systems for Nuclear Power Plants, 2014, pp. 97-103, https://doi.org/10.1007/978-4-431-54610-8. 

  12. J. Wu, L. Zhang, J. Hu, M. Lind, X. Zhang, S.B. Jorgensen, G. Sin, N. Jensen, An integrated qualitative and quantitative modeling framework for computerassisted HAZOP studies, American Institute of Chemical Engineering 60 (12) (2014) 4150-4173, https://doi.org/10.1002/aic.14593. 

  13. J. Wu,M. Lind, X. Zhang, S.B. Jorgensen, G. Sin, Validation of a functional model for integration of safety into process system design, in: 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, 2015, pp. 293-298, https://doi.org/10.1016/B978-0-444-63578-5.50044-X. 

  14. J. Wu, L. Zhang, S.B. Jorgensen, N. Jensen, X. Zhang, M. Lind, Procedure for validation of a functional model of a central heating system, in: World Conference of Safety of Oil and Gas Industry, Okayama, Japan, 2014, pp. 1-10. 

  15. T. Bergquist, J. Ahnlund, J.E. Larsson, L. Spaanenburg, Using correlation in MFM model design and validation, in: Proceedings AILS-04 Workshop, 2004, pp. 1-7. 

  16. J.E. Larsson, J. Ahnlund, T. Bergquist, F. Dahlstrand, B. Ohman, L. Spaanenburg, Improving expressional power and validation for multilevel flow models, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology 15 (1) (2004) 61-73 arXiv:0007035. 

  17. M.V. Bram, L. Hansen, D.S. Hansen, Z. Yang, Grey-box modeling of an offshore deoiling hydrocyclone system, in: IEEE Conference on Control Technology and Applications, 2017, pp. 94-98, https://doi.org/10.1109/CCTA.2017.8062446. 

  18. P. Durdevic, S. Pedersen, M. Bram, D. Hansen, A. Hassan, Z. Yang, Control oriented modeling of a de-oiling hydrocyclone, IFAC-PapersOnLine 48 (28) (2015) 291-296, https://doi.org/10.1016/j.ifacol.2015.12.141. 

  19. X. Zhang, M. Lind, O. Ravn, Consequence reasoning in multilevel flow modelling, in: IFAC Symposium on Analysis, Design and Evaluation of Humanmachine Systems, IFAC, Las Vegas, USA, 2013, pp. 187-194, https://doi.org/10.3182/20130811-5-US-2037.00028. 

  20. MATLAB, S. P. Toolbox, Release (R2017a), The MathWorks Inc, Natick, Massachusetts, 2017. 

  21. E.K. Nielsen, M.V. Bram, J. Frutiger, G. Sin, M. Lind, Modelling and validating a deoiling hydrocyclone for fault diagnosis using multilevel flow modeling, in: Internation Symposium on Future Instrumentation and Control for Nuclear Power Plants, Gyeongju, Korea, 2017. 

  22. P. Baldi, S. Brunak, Y. Chauvin, C.A.F. Andersen, H. Nielsen, Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics 16 (5) (2000) 412-424, https://doi.org/10.1093/bioinformatics/16.5.412. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로