$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Although fuel cell systems have advantages in terms of electric efficiency and environmental impact compared with conventional power systems, fuel cell systems have not been deployed widely due to their low reliability and high price. In order to guarantee the lifetime of 10 years, which is the comm...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
연료전지 시스템의 상용화를 저해하는 요인 중 하나로 셀 구성 요소의 내구성이 제기된 이유는? 연료전지 시스템이 제공할 수 있는 경제적, 환경적 이익으로 인하여 다양한 분야로의 적용 연구가 진행되고 있지만, 상용화를 저해하는 문제가 여전히 남아 있으며 그중 하나가 셀 구성 요소의 내구성이다. 초기 제작비용과 더불어 낮은 내구성으로 인한 스택 교체 등으로 인하여 유지비용이 많이 들어가기 때문에 기존 동력기관에 비하여 수명주기 운영비 측면에서 경쟁력이 뒤떨어지고 있다9-12). 일반적으로 발전설비의 수명은 10년 이상이지만 지금까지 연료전지의 수명은 일부 시스템을 제외하고는 이에 미치지 못하고 있다13).
연료전지란? 연료전지는 수소 또는 화석연료로부터 개질된 수소가 포함된 연료의 화학에너지를 직접 전기에너지로 전환시키는 전기화학 장치로 고효율의 청정에너지 기술이다3-5). 고분자 전해질연료전지(polymer electrolyte fuel cell, PEFC)는 일반적으로 100℃ 이하의 저온에서 작동되기 때문에 고온 연료전지에 비하여 물관리에 어려움이 있지만 빠른 시동성과 높은 동력밀도의 장점으로 자동차와 주택 그리고 소형 건물용의 열병합 발전에 가장 적합하게 적용되고 있다6-8).
고분자 전해질연료전지의 장단점은? 연료전지는 수소 또는 화석연료로부터 개질된 수소가 포함된 연료의 화학에너지를 직접 전기에너지로 전환시키는 전기화학 장치로 고효율의 청정에너지 기술이다3-5). 고분자 전해질연료전지(polymer electrolyte fuel cell, PEFC)는 일반적으로 100℃ 이하의 저온에서 작동되기 때문에 고온 연료전지에 비하여 물관리에 어려움이 있지만 빠른 시동성과 높은 동력밀도의 장점으로 자동차와 주택 그리고 소형 건물용의 열병합 발전에 가장 적합하게 적용되고 있다6-8).
질의응답 정보가 도움이 되었나요?

참고문헌 (88)

  1. Fuji Economiy, 2016 outlook of fuel cell technology.market, 2016, ISBN 978-4-8349-1922-6. 

  2. Korea Economic ministries, "Implementation strategy of boosting new energy industry and key technologies development" to cope with climate change, 2015, Economic Ministers' Meeting. 

  3. J. Lamrminie and A. Dicks, "Fuel Cell System Expalined", John Wiley, 2003. 

  4. F. Barbir, "PEM fuel cells: theory and practice", Academic Press Series series editor, Elsevier Academic Press, 2005. 

  5. C. S. Spiegel, "Design & Building Fuel Cells", McGraw-Hill, 2007. 

  6. V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, and P. Siano, "Recent advances and challenges of fuel cell based power system architectures and control - A review", Renewable and Sustainable Energy Reviews, Vol. 73, 2017, pp. 10-18. 

  7. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research", Applied Energy, Vol. 88, 2011, pp. 981-1007. 

  8. J. Garche and L. Jorissen, "Applications of Fuel Cell Technology: Status and Perspectives", The Electrochemical Society Interface, 2015, pp. 39-43. 

  9. F. A, Bruijn, "PEM Fuel Cells Durability and Cost, ECN-L-09-177, 2099; Presented at the Hydrogen and Fuel Cells in the Nodic Countries", 24-26 November 2009, Oslo Norway. 

  10. T. Fletcher, R. Thring, and M. Watkinson, "An Energy Management Strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle, international journal of hydrogen energy", Vol. 41, 2016, pp. 21503-21515. 

  11. X. Zhang and P. Pisu, "Prognostic-oriented fuel cell catalyst aging modeling and its application to health-monitoring and prognostics of a pem fuel cell, International Journal of Prognostics and Health Management", Vol. 5, 2014, pp. 1-16. 

  12. M. Zaton, J. Roziere, and D. J. Jones, "Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review", Sustainable Energy Fuels, Vol. 1, 2017, pp. 409-438. 

  13. M. Jouin, R. Gouriveau, D. Hissel, M. Pera, and N. Zerhouni, "Prognostics and Health Management of PEMFC-State of the art and remaining challenges", International Journal of Hydrogen Energy, Vol. 38, 2013, pp. 15307-15317. 

  14. The Department of Energy Fuel Cell Technology Office, "Multi-Year Research, Development, and Demonstration Plan", 2016. 

  15. The Department of Energy Fuel Cell Technology Office, "DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat and Power) Applications", https://energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-stationary-combined-heat-and-power. 

  16. The Department of Energy Fuel Cell Technology Office, "DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications", https://energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications. 

  17. NEDO, Road Map of fuel cell and hydrogen technology development, 2010, http://www.nedo.go.jp/library/battery_hydrogen.html. 

  18. D. P. Wilkinson and J. St-Pierre, "Hanbook of fuel cells: chapter 47 Durability", John Wiley, Vol. 3, 2003, pp. 611-626. 

  19. R. Patton, P. Frank, and R. Clark, "Fault Diagnosis in Dynamic Systems Theory and Application", 1989 Prentice Hall International Ltd., ISBN 0-13-308263-6. 

  20. N. Trapani, M. Macchi, and L. Fumagalli, "Risk driven engineering of Prognostics and Health Management systems in manufacturing", IFAC-PapersOnLine, Vol. 48-3, 2015, pp. 995-1000. 

  21. Q. Qian and P. Lin, "Safety risk management of underground engineering in China: Progress, challenges and strategies", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 8, 2016, pp. 423-442. 

  22. A. W. Righi, T. A. Saurin, and P. A. Wachs, "Systematic literature review of resilience engineering: Research areas and a research agenda proposal", Reliability Engineering and System Safety, Vol. 141, 2015, pp. 142-152. 

  23. S. Roe and D. Mba, "The environment, international standards, asset health management and condition monitoring: An integrated strategy", Reliability Engineering and System Safety, Vol. 94, 2009, pp. 474-478. 

  24. D. Montalvao, N. M. M. Maia, and A. M. R. Ribeiro, "A review of vibration-based structural health monitoring with special emphasis on composite materials", Shock Vib Dig., Vol. 38, No. 4, 2006, pp. 295-326. 

  25. W. Staszewski, C. Boller, and G. R. Tomlinson, "Health monitoring of aerospace structures: smart sensor technologies and signal processing", John Wiley & Sons, 2004. 

  26. Z. Hameed, Y. Hong, Y. Cho, S. Ahn, and C. Song, "Condition monitoring and fault detection of wind turbines and related algorithms: a review", Renew Sustain Energy Rev, Vol. 13, No. 1, 2009, pp. 1-39. 

  27. Y. Sinha and J. Steel, "A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis", Renew Sustain Energy Rev, Vol. 42, 2015, pp. 735-742. 

  28. A. Guillen, A. Crespo, M. Macchi, and J. Gomez, "On the role of Prognostics and Health Management in advanced maintenance systems", Production Planning & Control, Vol. 27, No. 12, 2016, pp. 991-1004. 

  29. T. Sutharssan, S. Stoyanov, C. Bailey, and C. Yin, "Prognostic and health management for engineering systems: a review of the data-driven approach and algorithms", The Journal of Engineering, 2015. 

  30. G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, and B. Wu, "INTELLIGENT FAULT DIAGNOSIS AND PROGNOSIS FOR ENGINEERING SYSTEMS", John Wiley & Sons, Inc., 2006, ISBN 978-0-471-72999-0. 

  31. K. Goebel, A. Saxena, M. Daigle, and J. Celaya, "Roychoudhury I, Clements S, Introduction to Prognostics", http://ftp.phmsociety.org/sites/phmsociety.org/files/Tutorial_Prognostics.pdf. 

  32. B. Sun, S. Zeng, R. Kang, and M. Pecht, "Benefits and Challenges of System Prognostics, IEEE Transactions on Reliability", Vol. 61, No. 2, 2012, pp. 323-335. 

  33. N. Holzel, T. Schilling, and V. Gollnick, "An Aircraft Lifecycle Approach for the Cost-Benefit Analysis of Prognostics and Condition-based Maintenance based on Discrete-Event Simulation", ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2014, pp. 1-16. 

  34. N. Holzel and V. Gollnick, "Cost-benefit Analysis of Prognostics and Condition-based Maintenance Concepts for Commercial Aircraft Considering Prognostic Errors", ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2015, pp. 1-16. 

  35. S. Sheng, "Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities", NREL, 2015, https://www.nrel.gov/docs/fy16osti/65605.pdf. 

  36. H. He, J. Zhao, and C. Xu, "Cost-benefit Model for PHM", Procedia Environmental Sciences, Vol. 10, 2011, pp. 759-764. 

  37. T. Sutharssan, D. Montalvao, Y. Chen, W. Wang, C. Pisac, and H. Elemara, "A review on prognostics and health monitoring of proton exchange membrane fuel cell", Renewable and Sustainable Energy Reviews, Vol. 75, 2017, pp. 440-450. 

  38. K. Javed, R. Gouriveau, N. Zerhouni, and D. Hissel, "Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life. in: Industrial Technology (ICIT)", 2015 IEEE International Conference on, IEEE, 2015, pp. 1047-1052. 

  39. M. Fowler, J. C. Mann, J. C. Amphlett, B. A. Preppy, and P. R. Robberge, "Hanbook of fuel cells", John Wiley, Vol. 3, 2003, pp. 663-677. 

  40. L. Placca and R. Kouta, "Fault tree analysis for PEM fuel cell degradation process modelling", Int. J. Hydrogen Energy, Vol. 36, 2011, pp. 12393-12405. 

  41. M. Whiteley, S. Dummet, and L. Jackson, "Failure Mode and Effect Analysis, and Fault Tree Analysis of Polymer Electrolyte Membrane Fuel Cells", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 1187-1202. 

  42. A. Colliera, H. Wang, X. Zi, Z.J. Yuan, and D. Wilkinsona, "Degradation of polymer electrolyte membranes", Int. J. Hydrogen Energy, Vol. 31, No. 13, 2006, pp. 1838-1854. 

  43. B. Huang, Y. Di, C. Jin, and J. Le, "REVIEW OF DATA-DRIVEN PROGNOSTICS AND HEALTH MANAGEMENT TECHNIQUES : LESSIONSLEARNED FROM PHM DATA CHALLENGE COMPETITIONS", Conference: Machine Failure Prevention Technology, 2017. 

  44. K. Javed, R. Gouriveau, N. Zerhouni, and D. Hissel, "Data-driven Prognostics of Proton Exchange Membrane Fuel Cell Stack with constraint based Summation-Wavelet Extreme Learning Machine", 6th International Conference on Fundamentals & Development of Fuel Cells, FDFC 2015, France, Toulouse. 

  45. R. Silva, R. Gouriveau, S. Jemei, D. Hisse, L. Boulon, and K. Agbossou, "Proton exchange membrane fuel cell degradation prediction based on adaptive neurofuzzy inference systems", Int. J. Hydrog Energy, Vol. 39, No. 21, 2014, pp. 11128-11144. 

  46. C. Okoh, R. Roy, and J. Mehnen, "Predictive maintenance Modelling for Through-Life Engineering Services", Procedia CIRP, Vol. 59, 2017, pp. 196-201. 

  47. J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, and J. Shen, "A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies", J. Power Sources, Vol. 184, No. 1, 2008, pp. 104-119. 

  48. T. Ishimoto and M. Koyama, "Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell", Membranes (Basel), Vol. 2, No. 3, 2012, pp. 395-114. 

  49. F. De Bruijin, "PEMFC LIfetime and Duribility an overview", Thessaloniki, Sept. 21, 2011, https://www.sintef.no/globalassets/upload/materialer_kjemi/energikonvertering-og-materialer/bilder/pemfc-overview-thessaloniki-fa-debruijn---f.pdf. 

  50. F. A. de Bruijn, V. A. T. Dam, and G. J. M. Janssen, "Review: Durability and Degradation Issues of PEM Fuel Cell Components", FUEL CELLS, Vol. 8, No. 1, 2008, pp. 3-22. 

  51. D. Seo, J. Lee, S. Park, J. Rhee, S. W. Choi, and Y. G. Shul, "Investigation of mea degradation in pem fuel cell by on/off cyclic operation under different humid conditions", Int. J. Hydrog Energy, Vol. 36, No. 2, 2011, pp. 1828-1836. 

  52. E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto, "Degradation study of mea for pemfcs under low humidity conditions", Electrochem Solid-State Lett, Vol. 7, No. 7, 2004, pp. A209-A211. 

  53. V. A. Sethuraman, J. W. Weidner, and A. T. Haug, "Pemberton M, Protsailo LV. Importance of catalyst stability vis-a-vis hydrogen peroxide formation rates in pem fuel cell electrodes", Electrochim Acta, Vol. 54, No. 23, 2009, pp. 5571-5582. 

  54. P. Pei and H. Chen, "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review", Applied Energy, Vol. 125, 2014, pp. 60-75. 

  55. S. Enz, T. A. Dao, M. Messerschmidt, and J. Scholta, "Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions", Journal of Power Sources, Vol. 274, No. 15, 2015, pp. 521-535. 

  56. N. Dyantyi, A. Parsons, C. Sita, and S. Pasupathi, "PEMFC for aeronautic applications: A review on the durability aspects", Open Eng., Vol. 7, 2017, pp. 287-302. 

  57. J. Xie, D. Wood, K. More, P. Atanassov, and R. L. Borup, "Durability of PEFCs at High Humidity Conditions", J. Electrochem. Soc., Vol. 152, 2005, pp. 1011-1020. 

  58. Y. Lee, K. Lee, J. Yun, and J. Byun, "A Study of the Electrode Catalyst Migration and Aging Mechanism of PEMFC", Trans. of Korean Hydrogen and New Energy Society, Vol. 23, No. 3, 2012, pp. 256-263. 

  59. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, "Carbon support oxidation in PEM fuel cell cathodes", J. Power Sources, Vol. 176, 2008, pp. 444-451. 

  60. A. Taniguchi, T. Akita, K. Yasuda, and Y. Miyazaki, "Analysis of degradation in PEMFC caused by cell reversal during air starvation", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 2323-2329. 

  61. J. Shan, R. Lina, S. Xia, D. Liua, and Q. Zhang, "Local resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycle", Int. J. Hydrogen Energy, Vol. 41, No. 7, 2016, pp. 4239-4250. 

  62. W. Schmittinger and A. Vahidi, "A review of the main parameters influencing long-term performance and durability of PEM fuel cells, Journal of Power Sources", Vol. 180, No. 1, 2008, pp. 1-14. 

  63. S. Yu, X. Li, J. Li, S. Liu, W. Lu, Z. Shao, and B. Yi, "Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells", Energy Conversion and Management, Vol. 76, 2013, pp. 301-306. 

  64. J. Park, H. Oh, J. Cho, K. Min, E. Lee, and J. Y. Jyoung, "Study on the Durability Characteristics of the PEM Fuel Cells having Gas Diffusion Layer with Different Micro Porous Layer Penetration Thicknesses", Trans. of Korean Hydrogen and New Energy Society, Vol. 24, No. 3, 2013, pp. 256-263. 

  65. M. Jouin, "Failure prognostics in a particle filtering framework - Application to a PEMFC stack", http://www2.irccyn.ec-nantes.fr/CE2/.../7_M_Jouin_20140612.pdf. 

  66. K. Wang, J. Tian, M. Pecht, and A. Xu, "A Prognostics and Health Management Based Method for Refurbishment Decision Making for Electromechanical Systems", IFAC-PapersOnLine, Vol. 48, No. 3, 2015, pp. 454-459. 

  67. J. Luo, M. Namburu, K. Pattipati, L. Qiao, M. Kawamoto, and S. Chigusa, "Model-based Prognostic Techniques", AUTOTESTCON 2003, IEEE Systems Readiness Technology Conference, Proceedings. 

  68. C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, S. Kumar, and M. Pecht, "Model-based and Data-driven Prognosis of Automotive and Electronic Systems", 5th Annual IEEE Conference on Automation Science and Engineering Bangalore, India, August 22-25, 2009. 

  69. T. Van and B. S. Yang, "Machine fault Diagnosis and Prognosis: The state of the Art", International Journal of Foluid Machinery and Systems, Vol. 2, No. 1, 2009, pp. 61-71. 

  70. T. Biagetti and E. Sciubb, "Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems", Energy, Vol. 29, No. 12-15, 2004, pp. 2553-2572. 

  71. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "Phm of proton exchange membrane fuel cells-a review", Chemical Engineering Transactions, Vol. 33, 2013, p. 1009. 

  72. W. Y. Lee, G. G. Park, Y. J. Sohn, S. G. Kim, and M. Kim, "Fault Detection and Diagnosis Methods for Polymer Electrolyte Fuel Cell System", Trans. of Korean Hydrogen and New Energy Society, Vol. 28, No. 3, 2017, pp. 252-272. 

  73. X. Zhang and P. Pisu, "An unscented kalman filter based approach for the health monitoring and prognostics of a polymer electrolyte membrane fuel cell", Annual conference of the prognostics and health management, 2012. 

  74. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC", Reliability Engineering and System Safety, Vol. 148, 2016, pp. 78-95. 

  75. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "PEMFC aging modelling for prognostics and health assessment", IFAC-PapersOnLine, Vol. 48, No. 21, 2015, pp. 790-795. 

  76. E. L. Lechartier, M. C. Pera, and R. Gouriveau, "Proton exchange membrane fuel cell behavioral model suitable for prognostics", Int. J. Hydrog Energy, Vol. 40, No. 26, 2015, pp. 8384-8397. 

  77. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "Prognostics of PEM fuel cells under a combined heat and power profile", IFAC-PapersOnLine, Vol. 48, No. 3, 2015, pp. 26-31. 

  78. M. Bressel, M. Hilairet, D. Hissel, and B. O. Bouamama, "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell", Applied Energy, Vol. 164, 2016, pp. 220-227. 

  79. A. J. Headley, M. Gross, and D. Chen, "Membrane Electrolyte Assembly Health Estimation Method for Proton Exchange Membrane Fuel Cells", J. Electrochem. En. Conv. Stor, Vol. 14, No. 4, 2017, p. 041008. 

  80. H. Liu, J. Chen, C. Y. Zhu, H. Su, and M. Hou, "Prognostics of Proton Exchange Membrane Fuel Cells Using A Model-based Method", IFAC-PapersOnLine, Vol. 50, No. 1, 2017, pp. 4757-4762. 

  81. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "Prognostics of pem fuel cell in a particle filtering framework", Int. J. Hydrog Energy, Vol. 39, No. 1, 2014, pp. 481-494. 

  82. S. Morando, S. Jemei, D. Hissel, R. Gouriveau, and N. Zerhouni, "ANOVA method applied to pemfc ageing forecasting using an echo state network", Mathematiccs and Computers in Simulation, Vol. 131, 2017, pp. 283-294. 

  83. K. Javed, R. Gouriveau, N. Zerhouni, and D. Hissel, "Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks", J. Power Sources, Vol. 324, 2016, pp. 745-757. 

  84. S. Morando, S. Jemei, R. Gouriveau, N. Zerhouni, and D. Hissel, "ANOVA method applied to pemfc ageing forecasting using an echo state network", In Proceedings of the 11th international conference on modeling and simulation of electric machines, converters and systems (ElectrIMACS 2014), 2014, pp. 652-657. 

  85. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery", IEEE International Conference on Prognostics and Health Management, PHM'2014-Enhancing Safety, Efficiency, Availability and Effectiveness of Systems through PHM Technology and Application, pp. 1-6. 

  86. D. Zhang, C. Cadet, C. Berenguer, and N. Yousfi-Steiner, "Some Improvements of Particle Filtering Based Prognosis for PEM Fuel Cells", IFAC-PapersOnLine, Vol. 49, No. 28, 2016, pp. 162-167. 

  87. S. J. Mayank, B. Mathieu, O. B. Belkacem, and D. T. Genevieve, "Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework", Computers and Chemical Engineering, Vol. 95, 2016, pp. 216-230. 

  88. D. Zhou, F. Gao, E. Breaz, A. Ravey, and A. Miraoui, "Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach", Energy, Vol. 138, No. 11, 2017, pp. 1175-1186. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로