$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

개선된 DRASTIC 기법과 퍼지기법을 이용한 밀양지역 지하수오염 취약성 평가
Assessment of Groundwater Contamination Vulnerability in Miryang City, Korea using Advanced DRASTIC and fuzzy Techniques on the GIS Platform 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.23 no.4, 2018년, pp.26 - 41  

정상용 (부경대학교 지구환경과학과) ,  후삼 엘딘 엘자인 (부경대학교 지구환경시스템과학부) ,  벤카트라마난 세나파티 (베트남 통덕탕대학교 과학기술개발관리학과) ,  박계헌 (부경대학교 지구환경과학과) ,  권해우 (한국광물자원공사 탐사기술팀) ,  유인걸 (한국광물자원공사 탐사기술팀) ,  오해림 (부경대학교 지구환경과학과)

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to improve the Original DRASTIC Model (ODM) for the assessment of groundwater contamination vulnerability on the GIS platform. Miryang City of urban and rural features was selected for the study area to accomplish the research purpose. Advanced DRASTIC Model (ADM) was de...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
DRASTIC 모델은 무엇인가? , 1987)인데. 이 기법은 7개의 인자(지하수면의 깊이, 지하수 함양량, 대수층 구성 암석, 토양 종류, 지형 경사, 불포화대 구성암석, 수리전도도)를 이용하며, 각 인자의 범위(Range)에 따른 등급(Rating)을 부여하여 점수를 계산해서 오염취약성을 평가하는 방법이다. 이 방법은 평가가 간단하고, 이해하기 쉽기 때문에 우리나라를 비롯하여, 미국, 유럽, 중동, 아프리카 등 전 세계적으로 많이 이용되고 있다.
DRASTIC 기법의 단점은? 이 방법은 평가가 간단하고, 이해하기 쉽기 때문에 우리나라를 비롯하여, 미국, 유럽, 중동, 아프리카 등 전 세계적으로 많이 이용되고 있다. 그러나 DRASTIC 기법은 평가인자의 수가 적고, 우리나라와 같이 암반이 주 대수층을 이루는 경우에는 과소평가되는 경향이 있으며,또한 오염취약성을 명확하게 구분하기 어려운 경우에 DRASTIC의 결정론적인 방법은 한계를 갖고 있다.
DRASTIC 모델이 전 세계적으로 많이 사용되는 이유는? 이 기법은 7개의 인자(지하수면의 깊이, 지하수 함양량, 대수층 구성 암석, 토양 종류, 지형 경사, 불포화대 구성암석, 수리전도도)를 이용하며, 각 인자의 범위(Range)에 따른 등급(Rating)을 부여하여 점수를 계산해서 오염취약성을 평가하는 방법이다. 이 방법은 평가가 간단하고, 이해하기 쉽기 때문에 우리나라를 비롯하여, 미국, 유럽, 중동, 아프리카 등 전 세계적으로 많이 이용되고 있다. 그러나 DRASTIC 기법은 평가인자의 수가 적고, 우리나라와 같이 암반이 주 대수층을 이루는 경우에는 과소평가되는 경향이 있으며,또한 오염취약성을 명확하게 구분하기 어려운 경우에 DRASTIC의 결정론적인 방법은 한계를 갖고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Abdullah, T.O., Ali, S.S., Al-Ansari, N.A., and Knutsson, S., 2015, Groundwater Vulnerability Mapping Using Lineament Density on Standard DRASTIC Model: Case Study in Halabja Saidsadiq Basin, Kurdistan Region, Iraq, Engineering, 7, 644-667. 

  2. Aller, L., T. Bennett, Lehr, J.H., Petty, R., and Hackett, G., 1987, DRASTIC: a standardized system to evaluate groundwater pollution potential using hydrogeologic settings, U.S. Environmental Protection Agency, Ada, Oklahoma 74820. 

  3. Baghapour, M.A., Nobandegani, A.F., Talebbeydokhti, N., Bagherzadeh, S., Nadiri, A.A., Gharekhani, M., and Chitsazan, N., 2016, Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran, Journal of Environmental Health Science and Engineering, 14(1), 13 (online). 

  4. Baalousha, H., 2010, Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand, Agricultural Water Management, 97(2), 240-246. 

  5. Barry, M.E. and Wayne, L., 1990, A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC, J. Soil and Water Conservation, 45(2), 242-245. 

  6. Barzegar, R., Moghaddam, A.A., and Baghban, H., 2016, A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran, Stochastic Environmental Research and Risk Assessment, 30(3), 883-899. 

  7. Boughriba, M., Barkaoui, A.E., Zarhloule, Y., Lahmer, Z., El Houadi, B., and Verdoya, M., 2010, Groundwater vulnerability and risk mapping of the Angad transboundary aquifer using DRASTIC index method in GIS environment, Arabian Journal of Geosciences, 3(2), 207-220. 

  8. Casas, A.M., Cortes, A.L., Maestro, A., Soriano, M.A., Riaguas, A., and Bernal, J., 2000, LINDES: A program for lineament length and density analysis, Computers & Geosciences, 26, 1011-1022. 

  9. Chitsazan, M. and Akhtari, A., 2009, A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran, Water Resour. Manage., 23, 1137-1155. 

  10. Choi, S., Moon, W.M., and Choi, S.-G., 2000, Fuzzy logic fusion of W-Mo exploration data from Seobyeog-ri, Korea, Geosciences J., 4(2), 43-52. 

  11. Choi, B.-S. and Ahn J.-G., 1998, A study on the estimation of reginal groundwater recharge ratio, J. Kor. Soc. Groundwater Environment, 5(2), 57-65. 

  12. Cho, S.-H., Cho, M., Moon, S.H., Kim, Y., and Lee, K.-S., 2008, Estimation of groundwater recharge in a district-scale using $^{18}O$ tracer, J. Geol. Soc. Korea, 44(3), 331-340. 

  13. Demico, R.V. and Klir G.J. 2004, Fuzzy logic in geology, Elsevier, Academic Press. 

  14. Dixon, B., 2004. Prediction of groundwater vulnerability using integrated GIS-based neuro-fuzzy techniques, J. of Spatial Hydrology, 4(2), 1-38. 

  15. Dixon, B., 2005a, Applicability of neuro-fuzzy techniques in predicting groundwater vulnerability: a GIS-based sensitivity analysis, J. of Hydrology, 309, 17-38. 

  16. Dixon, B., 2005b, Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool, J. of Applied Geography 25, 327-347. 

  17. Ercanoglu, M. and Gokceoglu, C., 2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey), Engineering Geology, 75, 229-250. 

  18. Evans, B.M. and Myers, W.L., 1990, A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC, J. of Soil and Water Conservation, 45(2), 242-245. 

  19. Fijani, E., Nadiri, A.A., Moghaddam, A.A., Tsai, F.T.C., and Dixon, B., 2013, Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran, J. of Hydrology, 503, 89-100. 

  20. Fritch, T.G., Mcknight, C.L., Yelderman Jr, J.C., and Arnold, J.G., 2000, An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach, Environmental Management, 25(3), 337-345. 

  21. Gemitzi, A., Petalas, C., Tsihrintzis, V.A., and Pisinaras, V., 2006, Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques, Environmental Geology, 49(5), 653-673. 

  22. Hahn, J., 1994, The best management practice and protection strategies of groundwater resources of USA, Kor. J. Engineering Geol., 4(1), 57-77. 

  23. Hahn, J., Hahn, K.S., Lee, Y.D., and Yoo, D.H., 1990, An assessment of groundwater pollution potential of a proposed petrochemical plant site in Ulsan, South Korea, J. Kor. Inst. Mining Geol., 23(4), 425-452. 

  24. Ham, S.Y., Cheong, J.Y., Kim, M.J., Kim, I.S., and Hwang, H.S., 2004, Assessing groundwater vulnerability using DRASTIC method and groundwater quality in Changwon city, Kor. Soc. Econ. Environ. Geol., 37(6), 631-645. 

  25. Hamutoko, J.T., Wanke, H., and Voigt, H.J., 2016, Estimation of groundwater vulnerability to pollution based on DRASTIC in the Niipele sub-basin of the Cuvelai Etosha Basin, Namibia, Physics and Chemistry of the Earth, Parts A/B/C, 93, 46-54. 

  26. Jo, S.B., Min, K.D., Woo, N.C., and Lee, S.R., 1999, A study on groundwater contamination potential of Pyungtaek-Gun area, Kyunggi-Do using GIS, J. Soil & Groundwater Environ., 6(2), 87-94. 

  27. Jo, S.B. and Shon, H., 2004, A study on the prediction of groundwater contamination using GIS, J. Kor. Geophysical Soc., 7(2), 121-134. 

  28. Kang, J. and Park, E., 2010, A comparative application of DRASTIC and SINTACS models for the assessment of groundwater vulnerability of Buyeo area, Korean J. Soil & Groundwater Environ., 15(5), 32-39. 

  29. Kim, G.B., Lee, J.Y., and Lee, K.K., 2004, Application of representative elementary area (REA) to lineament density analysis for groundwater implications, Geosciences J., 8(1), 27-42. 

  30. Kim, G.B., 2008, Consideration of trends and applications of groundwater vulnerability assessment methods in South Korea, J. Soil & Groundwater Environ., 13(6), 1-16. 

  31. Kim, J.Y. and Park, H.-J., 2013, A Comparative study of fuzzy relationship and ANN for landslide susceptibility in Pohang area, Kor. Soc. Econ. Environ. Geol., 46(4), 301-312. 

  32. Kim, Y.J., Sung, I.H., Kim, W.Y., Yu, I.H., and Park, J.D., 1993, A GIS technology for groundwater protection, Kor. J. Engineering Geol., 3(3), 253-266. 

  33. Koo, M.H., Kim, T.-K., Kim, S.-S., Chung, S.-R., Kang, I.-O., Lee, C.-J., and Kim, Y., 2013, Estimating groundwater recharge using the water-table fluctuation method: Effect of stream-aquifer interactions, Korean J. Soil & Groundwater Environ., 18(5), 65-76. 

  34. Lathamani, R., Janardhana, M.R., Mahalingam, B., and Suresha, S., 2015, Evaluation of aquifer vulnerability using drastic model and GIS: a case study of Mysore city, Karnataka, India, Aquatic Procedia, 4, 1031-1038. 

  35. Lee, H., Park, E., Kim, K., and Park, K.H., 2008, A joint application of DRASTIC and numerical groundwater flow model for the assessment of groundwater vulnerability of Buyeo-Eup area, Kor. J. Soil & Groundwater Environ., 13(1), 77-91. 

  36. Lee, K.H., 2004, First Course on Fuzzy, Theory and Applications, Springer, Berlin, p.335. 

  37. Lee, M.-J., Hyun, Y., Kim, Y., and Hwang, S.-I., 2013, Priority assessment for groundwater contamiantion management using analytic hierarchy process (AHP) and GIS approach, Kor. J. Soil & Groundwater Env., 18(5), 26-38. 

  38. Lee, S.R. and Kim Y.J., 1996, Analysis of groundwater pollution potential and risk using DRASTIC SYSTEM, J. GIS Ass. Korea, 4(1), 1-11. 

  39. Lee, S.R. and Choi, S.H., 1997, Groundwater pollution susceptibility assessment of Younggwang area using GIS technique, Kor. J. Soil & Groundwater Environ., 4(4), 223-230. 

  40. Min, K.-D., Lee, Y.-H., Lee, S.-R., Kim, Y.-J., and Hahn, J.-S., 1996, Analysis of groundwater polution potential and development of graphic user interface using DRASTIC system, J. Kor. Soc. Groundwater Environ., 3(2), 101-109. 

  41. Miryang City, General statistical Data of Miryang City, http://www.miryang.go.kr [accessed 18.04.03.] 

  42. MOCT.KOWACO, 2003, Report on groundwater basic investigation in Miryang city. 

  43. MOLTM.K-Water, 2012, Repot on national groundwater management plan (2012-2021). 

  44. Moratalla, A., Gomez-Alday, J.J., Sanz, D., Castano, S., and De Las Heras, J., 2011, Evaluation of a GIS-Based integrated vulnerability risk assessment for the mancha oriental system (SE Spain), Water Resources Management, 25(14), 3677-3697. 

  45. Nadiri, A.A., 2015, Application of artificial intelligence methods in geosciences and hydrology, OMICS Publication, p.124. 

  46. Nadiri, A.A., Gharekhani, M., Khatibi, R., Sadeghfam, S., and Moghaddam, A.A., 2017, Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM), Science of the Total Environment, 574, 691-706. 

  47. National Groundwater Information Center (NGIC), http://www.gims.go.kr, Groundwater of Miryang City [accessed 18. 06.11] 

  48. Park, C.-K., 1996, Estimation of the available amount of groundwater in South Korea: 1. Development of the method, J. Kor. Soc. Ground. Envron., 3(1), 15-20. 

  49. Park, H.-J., 2008, Evaluation of the probability of failure in rock slope using fuzzy reliability analysis, J. Kor. Soc. Econ. Environ. Geol., 41(6), 763-771. 

  50. Park, N.-W., Chi, K.-H., and Kwon, B.-D., 2005, Application of fuzzy information representation using frequency ratuo and nonparametric density estimation to mutiple-source spatial data fusion for landslide hazard mapping, J. Kor. Earth Sci. Soc., 26(2), 114-128. 

  51. Park, N.-W., Chi, K.-H., and Kwon, B.-D., 2004, Classification of multi-sensor remote sensing images using fuzzy logic fusion and iterative relaxation labeling, Kor. J. Remote Sensing, 20(4), 275-288. 

  52. Piscopo, G., 2001, Groundwater vulnerability map, explanatory notes-Castlereagh catchment, Parramatta NSW: Australia NSW Department of Land and Water Conservation. 

  53. Secunda, S., Collin, M.L., and Melloul, A.J., 1998, Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region, J. of Environmental Management, 54(1), 39-57. 

  54. Senapathi, V., Chung, S.Y., Rajesh, R., Lee, S.Y., Ramkumar, T., and Prasanna, M.V., 2015, Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: a case study of Dalcheon in Ulsan City, Korea, Environ. Sci. and Pollut. Resear., 22(15),11209-11223. 

  55. Senapathi, V., Chung, S.Y., Selvam, S., Lee, S.Y., and Elzain, H.E., 2017, Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS, Environ. Sci. and Pollut. Resear., 24(30), 23679-23693. 

  56. Sener, E., Sener, S., and Davraz, A., 2009. Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of the Senirkent-Uluborlu Basin (Isparta, Turkey), Hydrogeology J., 17(8), 2023-2035. 

  57. Shon, Howoong, 2001, A study on the prediction of groundwater contamination using the GIS in Hwanam 2 sector, Gyeonggi Province, Korea, Kor. Soc. Geophysics, 4(4), 267-285. 

  58. Woo, N.C., 1994, Introduction to DRASTIC: a method for groundwater vulnerability assessment, Kor. J. Econ. Environ. Geol., 27(6), 611-612. 

  59. Zadeh, L.A., 1965, Fuzzy sets, Information Control, 8(3), 338-353. 

  60. Zghibi, A., Merzougui, A., Chenini, I., Ergaieg, K., Zouhri, L., and Tarhouni, J., 2016, Groundwater vulnerability analysis of Tunisian coastal aquifer: an application of DRASTIC index method in GIS environment, Groundwater for Sustainable Development, 2, 169-181. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로