$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental car...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 5의 고농도 사례를 야기하는 주요 화학적 성분들을 조사하고 이들의 생성 과정을 파악하는 것이 중요하다. 따라서 본 연구에서는 2015년 10월에 한반도 주변에 형성된 고기압으로 인하여 광주 지역에서 발생한 PM2.5의 고농도 사례를 심층 분석하였다. 연구에서 PM2.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
낮은 풍속과 높은 상대습도와 같은 기상 조건들은 어떤 역할을 하였나요? 5의 고농도 사례의 원인으로 작용하였다. 낮은 풍속과 높은 상대습도와 같은 기상 조건들은 국지적으로 발생한 1차 오염물질들의 축적과 SO2와 NO2와 같은 기체상 전구물질들의 수용액상의 불균일 산화과정을 통한 2차 이온 성분들의 생성을 촉진시키는데 중요한 역할을 하였다. 더욱이 오후 시간에 관측된 O3의 최고 농도(79~95 ppb)는 광화학 산화반응을 통한 2차 에어 로졸 입자의 생성을 증가시켜 PM2.
광주 지역 PM2.5의 고농도 사례의 원인으로 작용한 요인들은 무엇인가요? 측정 기간 중 기상자료, MODIS 위성 영상, 일기도, 공기 역궤적 계산 결과 등에 대한 분석 결과는 낮은 풍속과 높은 상대습도, 한반도 주변의 고기압 발달로 인한 대기 정체 현상, 중국에서 발생한 연무의 장거리 수송에 의한 국내 유입 등이 광주 지역 PM2.5의 고농도 사례의 원인으로 작용하였다.
국립환경과학원 호남권 대기오염집중 측정소에서 측정한 기간 중 PM2.5와 주요 화학적 성분들의 시간별 자료의 분석에 의하면 PM2.5의 고농도 현상은 무엇에 기인하였는가? 5와 주요 화학적 성분들의 시간별 자료의 분석에 의하면 PM2.5의 고농도 현상은 2차 이온 성분들 (SO42-, NO3- 및 NH4+)의 농도 증가에 기인하였다. 그리고 유기 에어로졸 역시 PM2.
질의응답 정보가 도움이 되었나요?

참고문헌 (64)

  1. Andreae, M.O., Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning, Global Biogeochemical Cycles, 15, 955-966. 

  2. Bae, M.S., Shin, J.S., Lee, K.Y., Lee, K.H., Kim, Y.J. (2014) Longrange transport of biomass burning emissions based on organic molecular markers and carbonaceous thermal distribution, Science of the Total Environment, 466, 56-66. 

  3. Bagshaw, N.E. (1995) Lead alloys: Past, present and future, Journal of Power Sources, 53, 25-30. 

  4. Cho, S.Y., Park, S.S. (2013) Resolving sources of water-soluble organic carbon in fine particulate matter measured at an urban site during winter, Environmental Science-Processes & Impacts, 15, 524-534. 

  5. Cheng, Y.F., Zheng, G.J., Wei, C., Mu, Q., Zheng, B., Wang, Z.B., Gao, M., Zhang, Q., He, K.B., Carmichael, G., Poschl, U., Su, H. (2016) Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, e1601530. 

  6. Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Du, Z.-Y., Ma, Y.-L., Liang, L.-L., Lu, Z.-F., Liu, J.-M., Zheng, M., Weber, R.J. (2014) The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks, Environmental Pollution, 185, 149-157. 

  7. Duan, F., Liu, X., Yu, T., Cachier, H. (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing, Atmospheric Environment, 38, 1275-1282. 

  8. Grund, S.C., Hanusch, K., Wolf, H.U. (2008) Arsenic and Arsenic Compounds, Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 

  9. Guo, S., Hu, M., Zamora, M.L., Peng, J.F., Shang, D.J., Zheng, J., Fu, Z.F., Wu, Z.J., Shao, M., Zeng, L.M., Molina, M.J., Zhang, R.Y. (2014) Elucidating severe urban haze formation in China, Proceedings of National Academic Science of United States (PNAS), 111, 17373-17378. 

  10. Gwangju (2015) Current status of manufacturing industry in 2015 over Gwangju. 

  11. Heal, M.R., Kumar, P., Harrison, R.M. (2012) Particles, air quality, policy and health, Chemical Society Reviews, 41, 6606-6630. 

  12. Hu, M., Wu, Z.J., Slanina, J., Lin, P., Liu, S., Zeng, L.M. (2008) Acidic gases, ammonia and water-soluble ions in $PM_{2.5}$ at a coastal site in the Pearl River Delta, China. Atmospheric Environment, 42 (25), 6310-6320. 

  13. International Copper Association (1999) Copper: Its Trade, Manufacture, Use, and Environmental Status, Edited by Joseph, G., Kundig, K.J.A., pp. 123-124. 

  14. Ji, D.S., Li, L., Wang, Y.S., Zhang, J.K., Cheng, M.T., Sun, Y., Liu, Z.R., Wang, L.L., Tang, G.Q., Hu, B., Chao, N., Wen, T.X., Miao, H.Y. (2014) The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: insights gained from observation. Atmospheric Environment, 92, 546-556. 

  15. Jung, J., Kim, Y.J. (2011) Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Longrange transport pollution, post-harvest biomass burning, and Asian dust. Journal of Geophysical Research, 116, D02206. 

  16. Korea Industrial Complex Corporation (KICC) (2016) Final report on plans of network projects and revitalization for recycling waste resources from high-tech and Hanam industrial complexes in Gwangju. 

  17. Lin, P., Engling, G., Yu, J.Z. (2010). Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China, Atmospheric Chemistry and Physics, 10, 6487-6500. 

  18. Liu, Y.C., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D., Wu, Y., Zeng, L., Hu, M., Bateman, A.P., Martin, S.T. (2017) Submicrometer particles are in the liquid state during heavy haze episodes in the urban atmosphere of Beijing, China. Environmental Science and Technology Letters, 4, 427-432. 

  19. Louie, P.K.K., Ho, J.W.K., Tsang, R.C.W., Blake, D.R., Lau, A.K.H., Yu, J.Z., Yuan, Z.B., Wang, X.M., Shao, M,, Zhong, L.J. (2013) VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmospheric Environment, 76, 125-135 

  20. Ma, J., Chu, B., Liu, J., Liu, Y., Zhang, H., He, H. (2018) NOx promotion of $SO_2$ conversion to sulfate: An important mechanism for the occurrence of heavy haze during winter in Beijing, Environmental Pollution, 233, 662-669. 

  21. Malm, W.C., Molenar, J.V., Eldred, R.A., Sisler, J.F. (1996) Examining the relationship among atmospheric aerosols and light scattering and extinction in the Grand Canyon area. Journal of Geophysical Research, 101, 19251-19265. 

  22. Morawska, L., Zhang, J.F. (2002) Combustion sources of particles. 1. Health relevance and source signatures, Chemosphere, 49, 1045-1058. 

  23. National Institute of Environmental Research (NIER) (2016) 2015 annual report of intensive air quality monitoring station, NIER-GP2016-160. 

  24. Ogulei, D., Hopke, P.K., Zhou, L.M., Paatero, P., Park, S.S., Ondov, J. (2005) Receptor modeling for multiple time resolved species: The Baltimore supersite. Atmospheric Environment, 39, 3751-3762. 

  25. Park, S.S., Harrison, D., Pancras, J.P., Ondov, J. (2005) Time resolved elemental and organic carbon measurements at the Baltimore Supersite in 2002. Journal of Geophysical Research - Atmosphere, 110, D07S06, doi:10.1029/2004JD004610. 

  26. Park, S.S., Kleissl, J., Harrison, D., Kumar, V., Nair, N.P., Adam, M., Ondov, J., Parlange, M. (2006a) Characteristics of $PM_{2.5}$ episodes revealed by semi-continuous measurements at the Baltimore Supersite at Ponca St., Aerosol Science and Technology, 40, 845-860. 

  27. Park, S.S., Pancras, J.P., Ondov, J.M., Robinson, A. (2006b) Application of the pseudo-deterministic receptor model to resolve power plant influences on air quality in Pittsburgh, Aerosol Science and Technology, 40, 883-897. 

  28. Park, S.S., Jung, S.A., Gong, B.J., Cho, S.Y., Lee, S.J. (2013a) Characteristics of $PM_{2.5}$ haze episodes revealed by highly time-resolved measurements at an air pollution monitoring Supersite in Korea, Aerosol and Air Quality Research, 13, 957-976. 

  29. Park, S.-S., Kim, S.-J., Gong, B.-J., Cho, S.-Y., Kim, J.-C., Lee, S.J. (2013b) Investigation on a haze episode of fine particulate matter using semi-continuous chemical composition data. Journal of Korean Society for Atmospheric Environment, 29(5), 642-655. (in Korean with English abstract) 

  30. Park, S.S., Sim, S.Y., Bae, M.S., Schauer, J.J. (2013c) Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmospheric Environment, 73, 62-72. 

  31. Park, S.S., Cho, S.-Y., Jo, M.-R., Gong, B.-J., Park, J.-S., Lee, S.-J. (2014) Field evaluation of a near-real time elemental monitor and identification of element sources observed at an air monitoring supersite in Korea, Atmospheric Pollution Research, 5, 119-128. 

  32. Park, S., Yu, G.-H. (2018) Absorption properties and size distribution of aerosol particles during fall at an urban site of Gwangju, Korea, Environmental Engineering Research, doi:https://doi.org/10.4491/eer.2018.166. (in press) 

  33. Pathak, R.K., Wu, W.S., Wang, T. (2009) Summertime $PM_{2.5}$ ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmospheric Chemistry and Physics, 9, 1711-1722. 

  34. Pathak, R.K., Wang, T., Wu, W.S. (2011) Nighttime enhancement of $PM_{2.5}$ nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai: plausible contributions of heterogeneous hydrolysis of $N_2O_5$ and $HNO_3$ partitioning. Atmospheric Environment, 45, 1183-1191. 

  35. Rolph, G., Stein, A., Stunder, B. (2017) Real-time Environmental Applications and Display System: READY. Environmental Modelling & Software, 95, 210-228, https://doi.org/10.1016/j.envsoft.2017.06.025. 

  36. Saxena, M., Sharma, A., Sen, A., Saxena, P., Saraswati, Mandal, T.K., Sharma, S.K., Sharma, C. (2017) Water soluble inorganic species of $PM_{10}$ and $PM_{2.5}$ at an urban site of Delhi, India: Seasonal variability and sources, Atmospheric Research, 184, 112-125. 

  37. Seinfeld, J.H., Pandis, S.N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Ed., John Wiley & Sons, Inc. 

  38. Shao, P., Tiana, H., Sun, Y., Liu, H., Wu, B., Liu, S., Liu, X., Wu, Y., Liang, W., Wang, Y., Gao, J., Xue, Y., Bai, X., Liu, W., Lin, S., Hu, G. (2018) Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles ( $PM_1$ , $PM_{2.5}$ and $PM_{10}$ ) from January 2013 to 2016-2017 winter in Beijing, China. Atmospheric Environment, 189, 133-144. 

  39. Shen, X., Lee, T., Guo, J., Wang, X., Li, P., Xu, P., Wang, Y., Ren, Y., Wang, W., Wang, T., Li, Y., Cam, S.A., Collett Jr., J.L. (2012) Aqueous phase sulfate production in clouds in eastern China. Atmospheric Environment, 62, 502-511. 

  40. Sorooshian, A., Murphy, S.M., Hersey, S., Bahreini, R., Jonsson, H., Flagan, R.C., Seinfeld, J.H. (2010) Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region, Geophysical Research Letters, 37(21), L21807. 10.1029/2010GL044951. 

  41. Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., Ge, X. (2013a) The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment, 77, 927-934. 

  42. Sun, Y.L., Wang, Z.F., Fu, P.Q., Yang, T., Jiang, Q., Dong, H.B., Li, J., Jia, J.J. (2013b) Aerosol composition, sources and processes during wintertime in Beijing, China, Atmospheric Chemistry and Physics, 13(9), 4577-4592. 

  43. Sun, Y.L., Jiang, Q., Wang, Z.F., Yin, Y. (2014) Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research, 119, 420-425. 

  44. Sun, Y.L., Chen, C., Zhang, Y.J., Xu, W.Q., Zhou, L.B., Cheng, X.L., Zheng, H.T., Ji, D.S., Li, J., Tang, X., Fu, P.Q., Wang, Z.F. (2016) Rapid formation and evolution of an extreme haze episode in northern China during winter 2015, Scientific Report, 6, 27151. 

  45. Tan, J., Xiang, P., Zhou, X., Duan, J., Ma, Y., He, K., Cheng, Y., Yu, Z., Querol, X. (2016) Chemical characterization of humic-like substacnes (HULIS) in $PM_{2.5}$ in Lanzhou, China, Science of the Total Environment, 573, 1481-1490. 

  46. Tian, S.L., Pan, Y.P., Wang, Y.S. (2016) Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes, Atmospheric Chemistry Physics, 16, 1-19. 

  47. Turpin, B.J., Lim, H.J. (2001) Species contributions to $PM_{2.5}$ mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Science and Technology, 35, 602-610. 

  48. Wang, H., Xu, J., Zhang, M., Yang, Y., Shen, X., Wang, Y., Chen, D., Guo, J. (2014a) A study of the meteorological causes of a prolonged and severe haze episode in January 2013 over central eastern China. Atmospheric Environment, 98, 146-157. 

  49. Wang, J.D., Wang, S.X., Jiang, J.K., Ding, A.J., Zheng, M., Zhao, B., Wong, D.C., Zhou, W., Zheng, G., Wang, L. (2014b) Impact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode in January 2013, Environmental Research Letters, 9(9), 094002. 

  50. Wang, G., Zhang, R., Gomez, M.E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P.S., Duce, R.A., Kolb, C.E., Molina, M.J. (2016) Persistent sulfate formation from London Fog to Chinese haze, Proceedings of the National Academy of Sciences, 113, 13630-13635. 

  51. Wang, H.C., Lu, K.D., Chen, X.R., Zhu, Q.D., Chen, Q., Guo, S., Jiang, M., Li, X., Shang, D., Tan, Z., Wu, Y., Wu, Z., Zou, Q., Zheng, Y., Zeng, L., Zhu, T., Hu, M., Zhang, Y. (2017) High $N_2O_5$ concentrations observed in urban Beijing: implications of a large nitrate formation pathway. Environmental Science and Technology Letters, 4, 416-420. 

  52. Xie, Y.N., Ding, A.J., Nie, W., Mao, H.T., Qi, X.M., Huang, X., Xu, Z., Kerminen, V.M., Petaja, T., Chi, X.G., Virkkula, A., Boy, M., Xue, L.K., Guo, J., Sun, J.N., Yang, X.Q., Kulmala, M., Fu, C.B. (2015) Enhanced sulfate formation by nitrogen dioxide: implications from in situ observations at the sorpes station. Journal of Geophysical Research-Atmosphere, 120, 12679-12694. 

  53. Xu, L., Duan, F., He, K., Ma, Y., Zhu, L., Zheng, Y., Huang, T., Kimoto, T., Ma, T., Li, H., Ye, S., Yang, S., Sun, Z., Xu, B. (2017) Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing, Environmental Pollution, 227, 296-305. 

  54. Yang, Y.R., Liu, X.G., Qu, Y., Wang, J.L., An, J.L., Zhang, Y., Zhang, F. (2015). Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013, Atmospheric Research, 155, 192-203. 

  55. Yu, G.-H., Cho, S.Y., Bae, N.-S., Park, S.S. (2014) Difference in production routes of water-soluble organic carbon in $PM_{2.5}$ observed during non-biomass and biomass burning periods in Gwangju, Korea. Environmental Science: Processes & Impacts, 16, 1726-1736. 

  56. Yu, G.H., Cho, S.-Y., Bae, M.-S., Lee, K.H., Park, S.S. (2015) Investigation of $PM_{2.5}$ pollution episodes in Gwangju, Journal of Korean Society for Atmospheric Environment, 31(3), 269-286. (in Korean with English abstract) 

  57. Yu, G.-H., Zhang, Y., Cho, S.-Y., Park, S. (2017a) Influence of haze pollution on water-soluble chemical species in $PM_{2.5}$ and size-resolved particles at an urban site during fall, Journal of Environmental Sciences, 57, 370-382. 

  58. Yu, G.-H., Park, S.S., Park, J.S., Park, S.M., Song, I.H., Oh, J., Shin, H.J., Lee, M.D., Lim, H.B., Kim, H.W., Choi, J.Y. (2018a) Pollution characteristics of $PM_{2.5}$ observed during winter and summer in Baengryeongdo and Seoul, Journal of Korean Society for Atmospheric Environment, 34(1), 38-55. (in Korean with English abstract) 

  59. Yu, G.-H., Park, S.S., Ghim, Y.S., Shin, H.J., Lim, C.S., Ban, S.J., Yu, J.A., Kang, H.J., Seo, Y.K., Kang, K.S., Jo, M.R., Jung, S.A., Lee, M.H., Hwang, T.K., Kang, B.C., Kim, H.S. (2018b) Difference in chemical composition of $PM_{2.5}$ and investigation of its causing factors between 2013 and 2015 in air pollution intensive monitoring stations. Journal of Korean Society for Atmospheric Environment, 34(1), 16-37. (in Korean with English abstract) 

  60. Yu, J., Yu, G.-H., Park, S., Bae, M.-S. (2017b) Chemical and absorption characteristics of water-soluble organic carbon and humic-like substances in size-segregated particles from biomass burning emissions, Asian Journal of Atmospheric Environment, 11(2), 96-106. 

  61. Zhang, J.K., Sun, Y., Liu, Z.R., Ji, D.S., Hu, B., Liu, Q., Wang, Y.S. (2014) Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmospheric Chemistry and Physics,14, 2887-2903. 

  62. Zhang, R., Wang, G., Guo, S., Zamora, M.L., Ying, Q., Lin, Y., Wang, W., Hu, M., Yang, Y. (2015) Formation of urban fine particulate matter, Chemical Review, 115, 3803-3855. 

  63. Zhang, R., Sun, X., Shi, A., Huang, Y., Yan, J., Nie, T., Yan, X., Li, X. (2018). Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmospheric Environment, 177, 275-282. 

  64. Zhao, P.S., Dong, F., He, D., Zhao, X.J., Zhang, X.L., Zhang, W.Z., Yao, Q., Liu, H.Y. (2013) Characteristics of concentrations and chemical compositions for $PM_{2.5}$ in the region of Beijing, Tianjin, and Hebei, China, Atmospheric Chemistry and Physics, 13, 4631-4644. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로