$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Optimized M9 Minimal Salts Medium for Enhanced Growth Rate and Glycogen Accumulation of Escherichia coli DH5α 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.46 no.3, 2018년, pp.194 - 200  

Wang, Liang (Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University) ,  Liu, Qinghua (Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University) ,  Du, Yangguang (Xuzhou Center for Disease Control and Prevention) ,  Tang, Daoquan (Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University) ,  Wise, Michael J. (Computer Science and Software Engineering, University of Western Australia)

Abstract AI-Helper 아이콘AI-Helper

Glycogen plays important roles in bacteria. Its structure and storage capability have received more attention recently because of the potential correlations with environmental durability and pathogenicity. However, the low level of intracellular glycogen makes extraction and structure characterizati...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • A variety of media, including LB, Kornberg, MOPS, and M9 are used and the supplements have varied between studies. The initial purpose of our study was to investigate how Nterminus of glycogen branching enzyme (GBE) influences glycogen structure. Thus, we constructed a set of E.
본문요약 정보가 도움이 되었나요?

참고문헌 (35)

  1. Wilson WA, Roach PJ, Montero M, Baroja-Fernandez E, Munoz FJ, Eydallin G. et al. 2010. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34: 952-958. 

  2. Wang L, Wise MJ. 2011. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften 98: 719-729. 

  3. Melendez R, Melendez-Hevia E, Cascante M. 1997. How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J. Mol. Evol. 45: 446-455. 

  4. Chandra G, Chater KF, Bornemann S. 2011. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157: 1565-1572. 

  5. Bourassa L, Camilli A. 2009. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol. Microbiol. 72: 124-138. 

  6. Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Con- stant P. et al. 2008. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol. Microbiol. 70: 762-774. 

  7. Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MP. et al. 2008. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect. Immun. 76: 2531-2540. 

  8. Martinez-Garcia M, Stuart MC, Van Der Maarel MJ. 2016. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens. Int. J. Biol. Macromol. 89: 12-18. 

  9. Preiss J. 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38: 419-458. 

  10. Dauvillee D, Kinderf IS, Li ZY, Kosar-Hashemi B, Samuel MS, Rampling L. et al. 2005. Role of the Escherichia coli glgX gene in glycogen metabolism. J. Bacteriol. 187: 1465-1473. 

  11. Wang L, Liu Z, Dai S, Yan J, Wise MJ. 2017. The sit-and-wait hypothesis in bacterial pathogens: a theoretical study of durability and virulence. Front. Microbiol. 8: 2167. 

  12. Iglesias A, Preiss J. 1992. Bacterial glycogen and plant starch biosynthesis. Biochem. Educ. 20: 196-203. 

  13. Fung T, Kwong N, Zwan TVD, Wu M. 2013. Residual glycogen metabolism in Escherichia coli is specific to the limiting macronutrient and varies during stationary phase. J. Exp. Microbiol. Immunol. 17: 83-87. 

  14. Suzuki E, Umeda K, Nihei S, Moriya K, Ohkawa H, Fujiwara S. et al. 2007. Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942. Biochim. Biophys. Acta 1770: 763-773. 

  15. Wang L, Regina A, Butardo VM, Jr., Kosar-Hashemi B, Larroque O, Kahler CM. et al. 2015. Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli $DH5{\alpha}$ on glycogen structure, accumulation, and bacterial viability. BMC Microbiol. 15: 96. 

  16. Kostylev M, Otwell AE, Richardson RE, Suzuki Y. 2015. Cloning should be simple: Escherichia coli $DH5{\alpha}$ -mediated assembly of multiple DNA fragments with short end homologies. PLoS One 10: e0137466. 

  17. Morin M, Ropers D, Cinquemani E, Portais JC, Enjalbert B, Cocaign-Bousquet M. 2017. The Csr system regulates Escherichia coli fitness by controlling glycogen accumulation and energy levels. MBio 8: e01628-17. 

  18. Varik V, Oliveira SR, Hauryliuk V, Tenson T. 2016. Composition of the outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of stringent and relaxed Escherichia coli. Sci. Rep. 6: 22308. 

  19. Boehm A, Arnoldini M, Bergmiller T, Roosli T, Bigosch C, Ackermann M. 2016. Genetic manipulation of glycogen allocation affects replicative lifespan in E. coli. PLoS Gen. 12: e1005974. 

  20. Montero M, Rahimpour M, Viale AM, Almagro G, Eydallin G, Sevilla A. et al. 2014. Systematic production of inactivating and non-inactivating suppressor mutations at the relA locus that compensate the detrimental effects of complete spot loss and affect glycogen content in Escherichia coli. PLoS One 9: e106938. 

  21. Yamamotoya T, Dose H, Tian Z, Faure A, Toya Y, Honma M. et al. 2012. Glycogen is the primary source of glucose during the lag phase of E. coli proliferation. Biochim. Biophys. Acta 1824: 1442- 1448. 

  22. Eydallin G, Montero M, Almagro G, Sesma MT, Viale AM, Munoz FJ. et al. 2010. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res. 17: 61-71. 

  23. Montero M, Eydallin G, Viale AM, Almagro G, Munoz FJ, Rahim- pour M. et al. 2009. Escherichia coli glycogen metabolism is con- trolled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly intercon- nected with a wide variety of cellular processes. Biochem. J. 424: 129-141. 

  24. Eydallin G, Viale AM, Moran-Zorzano MT, Munoz FJ, Montero M, Baroja-Fernandez E. et al. 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett. 581: 2947-2953. 

  25. Kozlov G, Elias D, Cygler M, Gehring K. 2004. Structure of GlgS from Escherichia coli suggests a role in protein-protein interactions. BMC Biol. 2: 10. 

  26. Dedhia NN, Hottiger T, Bailey JE. 1994. Overproduction of glycogen in Escherichia coli blocked in the acetate pathway improves cell growth. Biotechnol. Bioeng 44: 132-139. 

  27. Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM. 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol. 175: 4744- 4755. 

  28. Okita TW, Rodriguez RL, Preiss J. 1981. Biosynthesis of bacterial glycogen. Cloning of the glycogen biosynthetic enzyme structural genes of Escherichia coli. J. Biol. Chem. 256: 6944-6952. 

  29. Alonso-Casajus N, Dauvillee D, Viale AM, Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT. et al. 2006. Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J. Bacteriol. 188: 5266-5272. 

  30. Chen G, Strevett KA. 2003. Impact of carbon and nitrogen conditions on E-coli surface thermodynamics. Colloids Surf. B Biointerfaces 28: 135-146. 

  31. Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y. 2008. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J. Biosci. Bioeng. 106: 231-236. 

  32. Mittal N, Budrene EO, Brenner MP, Van Oudenaarden A. 2003. Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100: 13259-13263. 

  33. Lo Leggio L, Ernst HA, Hilden I, Larsen S. 2002. A structural model for the N-terminal N1 module of E-coli glycogen branching enzyme. Biologia 57: 109-118. 

  34. Hilden I, Leggio LL, Larsen S, Poulsen P. 2000. Characterization and crystallization of an active N-terminally truncated form of the Escherichia coli glycogen branching enzyme. Eur. J. Biochem. 267: 2150-2155. 

  35. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로