$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

광통신의 발전 과정 및 향후 전망
Fiber-optic Communications - Historical Perspectives and Future Directions 원문보기

한국광학회지 = Korean journal of optics and photonics, v.29 no.5, 2018년, pp.187 - 203  

정윤철 (한국과학기술원 전기 및 전자공학부)

초록

본 논문에서는 지난 40여 년간 이룩된 광통신 기술의 눈부신 발전 과정을 되돌아보고 예상되는 향후 발전 방향에 대하여 기술하였다. 특히, 초고속 대용량 광전송 시스템의 발전 과정에서 핵심적인 역할을 수행한 기술들을 역사적 관점에서 정리하였다. 본 논문은 광통신 분야에 새로이 입문하는 젊은 공학도들을 위하여 작성된 것이다.

Abstract AI-Helper 아이콘AI-Helper

This paper reviews the progress achieved in the field of fiber-optic communications during the last 40 years, and discusses its future directions. In particular, the highlights and milestones in the development of the high-capacity fiber-optic transmission system are presented in historical perspect...

주제어

표/그림 (5)

질의응답

핵심어 질문 논문에서 추출한 답변
공간분할 다중화 기술이 제안된 이유는 무엇인가? 광통신 기술이 이렇게 빠른 속도로 발전할 수 있었던 가장 중요한 이유는 저손실 광섬유,상온에서 동작하는 반도체 레이저, 에르븀 첨가 광섬유 증폭기, 파장분할다중화 기술, 첨단 변조 방식, 디지털 코히런트수신기술 등 수많은 혁신적 요소기술들이 필요에 맞추어 끊임없이 개발되어왔기 때문이다. 그러나 광통신 시스템의 전송용량이 nonlinear Shannon limit로 인한 이론적 한계치의 3 dB 이내로 근접함에 따라 더 이상의 용량증가가 거의 불가능한 단계에 도달하고 있다. 이러한 문제점을 해결하기 위하여 최근 또 다른 혁신적 방안이라고 할 수 있는 공간분할 다중화 기술이 제안된 바 있으며[9], 현재 이와 관련하여 많은 연구가 활발하게 진행되고 있으나 과연 이러한 기술을 상용화할 수 있을 만큼 경제적으로 구현될 수 있는지에 대해서는 아직 회의적인 시각도 있는 것이 현실이다.
광통신망의 역할은 무엇인가? 광통신은 이러한정보화시대의 근간이 되는 기술이다. 광통신망은 이제 육상에서뿐 아니라 바다 밑까지 광섬유를 이용하여 전 세계를 거미줄처럼 연결하고 있으며, 우리가 지구상 어디에 있건 상관없이 언제든 서로 자유롭게 소통하고 정보를 교환할 수 있도록 해준다. 이러한 이유로 인하여 광통신은 20세기에 이룩된 가장 중요한 발명 중 하나로 손꼽히고 있다[1-5].
광통신 기술이 빠르게 발전 할 수 있었던 이유는? 이와 관련하여 Scientific American은 광통신의 전송용량이 9개월마다 2배씩 증가하였으며, 이는 18개월마다 2배씩 증가해온 반도체의 집적용량이나 12개월마다 2배씩 증가해온 데이터 저장기술의 발전 속도와 비교하여도 매우 빠른 것으로서, 이와 같이 급속한 광통신 기술의 발전은 “빛의 승리(The triumph of the light)”라고 보도한 바 있다[8]. 광통신 기술이 이렇게 빠른 속도로 발전할 수 있었던 가장 중요한 이유는 저손실 광섬유,상온에서 동작하는 반도체 레이저, 에르븀 첨가 광섬유 증폭기, 파장분할다중화 기술, 첨단 변조 방식, 디지털 코히런트수신기술 등 수많은 혁신적 요소기술들이 필요에 맞추어 끊임없이 개발되어왔기 때문이다. 그러나 광통신 시스템의 전송용량이 nonlinear Shannon limit로 인한 이론적 한계치의 3 dB 이내로 근접함에 따라 더 이상의 용량증가가 거의 불가능한 단계에 도달하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (135)

  1. "The top 10 inventions of the 20th century," Act for Libraries (http://www.actforlibraries.org/the-top-10-inventions-of-the-20th-century/). 

  2. "Greatest engineering achievements of the 20th century," National Academy of Engineering, (http://www.greatachievements.org/). 

  3. "20th Century Technology," Time Magazine, (http://content.time.com/time/photogallery/0,29307,2026224,00.html). 

  4. "A world transformed: what are the top 30 innovations of the last 30 years?," Knowledge@Wharton, Feb. 18, 2009 (http://knowledge.wharton.upenn.edu). 

  5. "15 influential Innovations of the Past 50 Years," CNBC, (https://www.cnbc.com/2011/09/19/15-Influential-Innovations-of-the-Past-50-Years.html?slide5). 

  6. J. Hecht, "City of light: the story of fiber optics," Oxford University Press (April 2004). 

  7. "Alcatel-Lucent unveils single-carrier 100G/200G DWDM optical line card," Lightwave (Sept. 24, 2014). 

  8. G. Stix, "The triumph of the light," Scientific American (Jan. 2001), Vol. 284, No. 1, pp. 80-86. 

  9. A. R. Chraplyvy, "The coming capacity crunch," Proc. ECOC, plenary talk (Sept. 2009). 

  10. Cisco, "The zettabyte era: Trends and analysis," white paper (June 7, 2017). 

  11. G. Kizer, "Digital microwave communication: Engineering point-to-point microwave systems," Wiley-IEEE Press (June 2013). 

  12. G. J. Mullet, "Wireless telecommunications systems and networks," Thomson Delmar Learning (Sept. 2005). 

  13. R. M. Jansen and R. C. Prime, "TH-3 microwave radio system: system considerations," Bell Syst. Tech. J. 50, 2085-2116 (1971). 

  14. D. A. Alsberg, J. C. Bankert, and P. T. Hutchison, "The WT4/WT4A millimeter-wave transmission system," Bell Syst. Tech. J. 56, 1829-1848 (1977). 

  15. W. D. Warters, "Millimeter waveguide scores high in field test," Bell Laboratories Record (Nov. 1975), pp. 401-408. 

  16. K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proc. IEE 113, 1151-1158 (1966). 

  17. F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass waveguides," Appl. Phys. Lett. 17, 423-425 (1970). 

  18. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, "Junction lasers which operate continuously at room temperature, Appl. Phys. Lett. 17, 109-111 (1970). 

  19. R. W. Dixon, "Remembering the million-hour laser," Optics & Photonics News (May 2012), pp. 44-48. 

  20. I. Jacobs, "Atlanta fiber system experiment: overview," Bell Syst. Tech. J. 57, 1717-1721 (1978). 

  21. I. Jacobs, "Lightwave system development: looking back and ahead," Optic & Photonics News (Feb. 1995), pp. 19-23. 

  22. M. I. Schwartz, W. A. Reenstra, J. H. Mullins, and J. S. Cook, "The Chicago lighwave communications project," Bell Syst. Tech. J. 57, 1881-1888 (1978). 

  23. G. P. Agrawal, "Lightwave technology: Telecommunication systems," Wiley-Interscience (2005). 

  24. "Special Edition: FT series G," The Valley Voice, AT&T Network Systems (Feb. 1986). 

  25. R. J. Sanferrare, "Terrestrial lightwave systems," AT&T Tech. J. 66, 97-107 (1987). 

  26. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, "High-gain rare-earth-doped fiber amplifier at $1.54{\mu}m$ ," Proc. OFC/IOOC (Feb. 1987), paper WI2. 

  27. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum., "Erbium fiber laser amplifier at 1.55 mm with pump at 1.49 mm and Yb sensitized Er oscillator," Proc. OFC (Feb. 1988), paper PD2-1. 

  28. Y. Kimura, K. Suzuki, and M. Nakazawa, "Efficient $Er^{3+}$ -doped optical fiber amplifier pumped by a $1.48-{\mu}m$ high-power laser diode," Proc. OFC (Feb. 1989), paper TUG6. 

  29. M. Nakazawa, Y. Kimura, and K. Suzuki, "Soliton amplification and transmission with an $Er^{3+}$ -doped fiber repeater pumped by InGaAsP laser diodes," Proc. OFC (Feb. 1989), paper PD2-1. 

  30. N. Edagawa, Y. Yoshida, H. Taga, S. Yamamoto, K. Mochizuki, and H. Wakabayashi, "904 km, 1.2 Gbit/s non-regenerative optical fibre transmission experiment using 12 Er-doped fiber amplifiers," Electron Lett. 26, 66-67 (1990). 

  31. S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihashi, and T. Ito, "An over 2,200 km coherent transmission experiment at 2.5 Gbit/s using erbium-doped fiber amplifiers," Proc. OFC (Feb. 1990), paper PD2-1. 

  32. H. Taga, Y. Yoshida, N. Edagawa, S. Yamamoto, and H. Wakabayashi, "459 km, "2.4 Gbit/s four wavelength multiplexing optical fibre transmission experiment using six Er-doped fibre amplifiers," Electron Lett. 26, 500-601 (1990). 

  33. D. A. Fishman, J. A. Nagel, T. W. Cline, R. E. Tench, T. C. Pleiss, T. Miller, D. G. Coult, M. A. Milbrodt, P. D. Yeates, A. Chraplyvy, R. Tkach, A. B. Picirilli, J. R. Simpson, and C. M. Miller, "A high capacity noncoherent FSK lightwave field experiment using $Er^{3+}$ -doped fiber optical amplifiers," IEEE Photon. Technol. Lett. 2, 662-664 (1990). 

  34. C. Dragone, "An NxN optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991). 

  35. T. Mack, "Communications: the next wave," Forbes (Oct. 6, 1997). 

  36. B. Gowan, "#Ciena25: The story behind the founding of Ciena," Ciena, Sept. 14, 2017 (http://www.ciena.com/insights/articles/Ciena-20-The-Founding-of-Ciena_prx.html). 

  37. H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai,S. Kinoshita, M. Seino H. Nishimoto, and T. Chikama, "1.1 Tb/s WDM transmission over a 150 km $1.3{\mu}m$ zero-dispersion single-mode fiber," Proc. OFC (Feb. 1996), paper PD19-1. 

  38. A. H. Gnauck, A. R. Chraplyvy, R. W. Thach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, "One terabit/s transmission experiment," Proc. OFC (Feb. 1996), paper PD20-1. 

  39. T. Morioka, H. Takara, S. Kawanshi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, " $100\;Gbit/s{\times}10\;channel$ OTDM/WDM transmission using a single supercontinuum WDM source," Proc. OFC (Feb. 1996), paper PD21-1. 

  40. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, "10.92-Tb/s ( $273{\times}40-Gb/s$ ) triple-band/ultra-dense WDM optical-repeatered transmission experiment," Proc. OFC (Mar. 2001), paper PD24-1. 

  41. S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veitlr, A. Jourdan, and J.-P. Hamaid, "10.2 Tbit/s ( $256{\times}42.7\;Gbit/s$ PDM/WDM) transmission over 100 km $TeraLight^{TM}$ fiber with 1.28 bit/s/Hz spectral efficiency," Proc. OFC (Mar. 2001), paper PD25-1. 

  42. A. A. Huurademan, "The worldwide history of telecommunications," Wiley-Interscience (2003). 

  43. P. E. White, "Estimated network load," Bellcore, private communication (Jan. 1993). 

  44. A. M. Ozylko, "Measurements and mismeasurements and the dynamics of data traffic growth," Computer Measurement Group's International Conference (Dec. 2002). 

  45. M. Castells, "The information age: economy, society and culture, Vol. 1-3," Wiley-Blackwell (1996-1998). 

  46. C. Lu, "The race for bandwidth: understanding data transmission," Microsoft Press (1998). 

  47. M. D. O'Dell, "Racing with an exponential or the dangers of linear thinking in an exponential world," Stanford symposium, Optical Internet: The Next Generation (May 16, 2000). 

  48. G. Gilder, "Fiber keeps its promise," Forbes ASAP (Apr. 7, 1997). 

  49. J. Wimmer, plenary talk, OFC/IOOC 1999 (Feb. 1999). 

  50. E. Kreifeldt, "MCI WorldCom's Wimmer lays out optical roadmap," Fiber Optics Online (Apr. 4, 2000). 

  51. J. Hecht, "Boom, bubble, burst: The fiber optic mania," Optics & Photonics News (Oct. 2016), pp. 48-53 

  52. V. Cerf, "The high capacity challenge," plenary talk, OFC 2002 (Mar. 2002). 

  53. "Global internet geography," TeleGeography (2003). 

  54. "The great telecoms crash," Economist (July 18, 2002). 

  55. L. Endlich, "Optical illusions: Lucent and the crash of telecom," Simon & Schuster (2004). 

  56. M. A. Wegleitner, "Maximizing the impact of optical technology," plenary talk, OFC/NFOEC (Mar. 2007). 

  57. A. Viglienzoni, "Evolution of products and enabling technologies for optical networks," Proc. Photonics in Switching (Aug. 2008). 

  58. P. Polishuk, "Network traffic growth projection," Information Gatekeepers Inc. (Dec. 19, 2006). 

  59. "IX backplane maximum/minimum traffic volume," Japan Internet Exchange Co (June 7, 2014). 

  60. "Cisco visual networking index: Forecast and methodology, 2011-2016," Cisco (May 30, 2012). 

  61. R. W. Tkach, "Technologies for a renaissance in long-distance optical communications," plenary talk, Asia-Pacific Optical Communications (APOC) Conference (Oct. 2008). 

  62. S. E. Ante, "Telecom: Back from the dead," Businessweek (June 26, 2007). 

  63. T. Wu, "Bandwidth is the new black gold," TIME Magazine (Mar. 11, 2010). 

  64. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, "26 Tbit $s^{-1}$ line-rate super-channel transmission utilizing all-optical fast Fourier transform processing," Nat. Photon. 5, 364-371 (2011). 

  65. "ZTE displays 400-Gbps and 1-Tbps DWDM prototype," Lightwave (June 18, 2012). 

  66. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, "1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access," Proc. OFC (Mar. 2009), paper PDPC1. 

  67. R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, "1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM," Proc. OFC (Mar. 2015), paper Th5B.1. 

  68. D. S. Millar1, L. Galdino, R. Maher, M. Pajovic, T. Koike-Akino, G. Saavedra, D. J. Elson, D. Lavery, K. Shi, M. S. Erkilinc, E. Sillekens, R. I. Killey, B. C. Thomsen, K. Kojima, K. Parsons, and P. Bayvel, "A simplified dual-carrier DP-64QAM 1 Tb/s transceiver," Proc. OFC (Mar. 2017), paper M3D.2. 

  69. "Recommendation ITU-T G.709/Y.1331," ITU (June 22, 2016). 

  70. "The 2016 Ethernet roadmap," Ethernet Alliance (Mar. 2016). 

  71. S. J. Trowbridge, "Ethernet and OTN - 400G and beyond," Proc. OFC (Mar. 2015), paper Th3H.1. 

  72. N. Yoshikane and I. Morita, "1.14 b/s/Hz spectrally efficient $50{\times}85.4-Gb/s$ transmission over 300 km using copolarized RZ-DQPSK signals," J. Lightw. Technol. 23, 108-114 (2005). 

  73. A. H. Gnauck, P. J. Winzer, L. L. Buhl, T. Kawanishi, T. Sakamoto, M. Izutsu, and K. Higuma, "12.3-Tb/s C-band DQPSK transmission at 3.2 b/s/Hz spectral efficiency," Proc. ECOC (Sept. 2006), paper Th4.1.2. 

  74. S. Zhang, F. Yaman, Y.-K. Huang, J. D. Downie, D. Zou, W. A. Wood, A. Zakharian, R. Khrapko, S. Mishra, V. Nazarov, J. Hurley, I. B. Djordjevic, E. Mateo, Y. Inada, "Capacity-approaching transmission over 6375 km at spectral efficiency of 8.3 bit/s/Hz," Proc. OFC (Mar. 2016), paper Th5C.2. 

  75. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi and T. Morioka, "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source," Electron. Lett. 41, 270-271 (2005). 

  76. "ITU-T recommendation G.692, Optical interfaces for multichannel systems with optical amplifiers," ITU (Oct. 1998). 

  77. "ITU-T recommendation G.694.1, Spectral grids for WDM applications: DWDM frequency grid," ITU (Feb. 2012). 

  78. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, Member, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, "1 -Tb/s Transmission Experiment," IEEE Photon. Technol. Lett. 8, 1264-1266 (1996). 

  79. G. May, A. Solheim, and J. Conradi, "Extended 10 Gb/s fiber transmission distance at 1538 nm using a duobinary receiver," IEEE Photon. Technol. Lett. 6, 648-650 (1994). 

  80. K. Yonenaga and K. Hagimoto, " $10-Gbit/s{\times}four-channel$ WDM transmission experiment over 2400-km DSF using optical DPSK direct detection scheme," Proc. OFC (Feb. 1997), paper ThS2. 

  81. R.A. Griffin and A.C. Carter, "Optical differential quadrature phase-shift key (oOQPSK) for high capacity optical transmission," Proc. OFC (Mar. 2002), paper WX6. 

  82. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express 23, 4960-4969 (2015). 

  83. O. E. DeLange, "Wide-band optical communication systems: Part II-Frequency-division multiplexing," Proc. IEEE, 58, 1683-1690 (1970). 

  84. T. Imai, Y. Hayashi, N. Ohkawa, T. Sugie, Y. Ichihashi, and T. Ito, "Field demonstration of 2.5 Gbit/s coherent optical transmission through installed submarine fibre cables," Electron. Lett. 26, 1407-1409 (1990). 

  85. D. MacGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation," Proc. OFC (Mar. 2005), paper PDP27. 

  86. S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission," Proc. OFC (Mar. 2005), paper PDP29. 

  87. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightw. Technol. 24, 12-21 (2006). 

  88. K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," IEEE J. Sel. Topics Quantum Electron. 12, 563-570 (2006). 

  89. K. Roberts, "Electronic dispersion compensation beyond 10 Gb/s," in Proc. 2007 Digest of the LEOS Summer Topical Meetings (Jul. 2007), pp. 9-10. 

  90. C. Laperle and M. O'Sullivan, "Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers," J. Lightw. Technol. 32, 629-643 (2014). 

  91. L. Kull, D. Luu, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, A. Cevrero, I. Oezkaya, H. Yueksel, and T. Toifl, "CMOS ADCs towards 100 GS/s and beyond," in Proc. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (Oct. 2016). 

  92. P. Bower and I. Dedic, "High speed converters and DSP for 100G and beyond," Opt. Fiber Technol. 17, 464-472 (2011). 

  93. A. Sano, H. Masuda, Y. Kisaka, S. Aisawa, E. Yoshida, Y. Miyamoto, M. Koga, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, "14-Tb/s (140 111-Gb/s PDM/WDM) CSRZ-DQPSK transmission over 160 km using 7-THz bandwidth extended L-band EDFAs," Proc. ECOC (Sept. 2006), paper Th4.1.1. 

  94. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, "25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals," Proc. OFC (Mar. 2007), paper PDP19. 

  95. Y. Takushima, H. Y. Choi, and Y. C. Chung, "Transmission of 108-Gb/s PDM 16ADPSK signal on 25-GHz grid using non-coherent receivers," Opt. Express 17, 13458-13466 (2009). 

  96. A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, " $10{\times}112\;Gb/s$ PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency," Proc. OFC (2009), paper PDPB8. 

  97. J. Yu, X. Zhou, Y.-K. Huang, S. Gupta, M.. Huang, T. Wang, and P. Magill, "112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM grid," Proc. OFC (2010), paper OThM1. 

  98. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, "Transmission of 16.4 Tbit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver," Proc. OFC (Mar. 2008), paper PDP3. 

  99. J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, "25Tb/s transmission over 5,530km using 16QAM at 5.2 b/s/Hz spectral efficiency," Opt. Express 21, 1555-1560 (2013). 

  100. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, "13.5 Tb/s ( $135{\times}111\;Gb/s/ch$ ) noguard-interval coherent OFDM transmission over 6248 km using SNR maximized second-order DRA in the extended L-band," Proc. OFC (Mar. 2009), paper PDPB5. 

  101. "Product brochure: 6500 packet-optical platform," Ciena (Apr. 2017). 

  102. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010). 

  103. H. Ono, M. Yamada, and Y. Ohishi, "Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the $1.57-1.60-{\mu}m$ wavelength region," IEEE Photon. Technol. Lett. 9, 596-598 (1997). 

  104. T. Kasamatsu, Y. Yano, and H. Sekita, " $1.50-{\mu}m$ -band gain-shifted thulium-doped fiber amplifier with 1.05- and $1.56-{\mu}m$ dual-wavelength pumping," Opt. Lett. 24, 1684-1686 (1999). 

  105. T. J. Whitley, "A review of recent system demonstrations incorporating $1.3-{\mu}m$ praseody-mium-doped fluoride fiber amplifiers," J. Lightw. Technol. 13, 744-760 (1995). 

  106. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614-1616 (2005). 

  107. J. Bromage, "Raman amplification for fiber communications systems," J. Lightw. Technol. 22, 79-93 (2004). 

  108. R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibers," Electron. Lett. 24, 47-48 (1988). 

  109. A. R. Chraplyvy, "The coming capacity crunch," Proc. ECOC, plenary talk (Sept. 2009). 

  110. M. Nakazawa, "Extremely advanced transmission with 3M technologies (multi-level modulation, multi-core & multi-mode)," Proc. OFC (Mar. 2012), paper OTu1D.1. 

  111. D. J. Richardson, J. M. Fini and L. E. Nelson, "Space-division multiplexing in optical fibres," Nat. Photon. 7, 354-362 (2013). 

  112. Y. Sasaki, R. Fukumoto, K. Takenaga, K. Aikawa, K. Saitoh, T. Morioka, and Y. Miyamoto, "Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre," Proc. ECOC (Sept. 2016), paper W.2.B.2. 

  113. G. Li, N. Bai, N. Zhao, and C. Xia, "Space-division multiplexing: the next frontier in optical communication," Adv. Opt. Photon. 6, 413-487 (2014). 

  114. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, "1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency," Proc. ECOC (Sept. 2012), paper Th.3,C.1. 

  115. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, " $1.03-Exabit/s{\cdot}km$ super-Nyquist-WDM transmission over 7,326-km seven-core fiber," Proc. ECOC (Sept. 2013), paper PD3.E.3. 

  116. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, " $12-core{\times}3-mode$ dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization, Proc. OFC (Mar. 2014), paper Th5B.2. 

  117. B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano and J. Marciante, "2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb," Proc. ECOC (Sept. 2015), paper PDP.3.1. 

  118. T. Mizuno K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, "32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line," Proc. OFC (Mar. 2016), paper Th5C.3. 

  119. M. A. Taubenblatt, "Optical interconnects for high-performance computing," J. Lightw. Technol. 30, 448-458 (2012). 

  120. A. A. M. Saleh and J. M. Simmons, "All-optical networking - evolution, benefits, challenges, and future vision," Proc. IEEE 100, 1105-1117 (2012). 

  121. T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46, 146-149 (2008). 

  122. "MCP-9328: Reconfigurable optical add-drop multiplexer (ROADM) - A global strategic business report, Global Industry Analysts, Inc. (May 7, 2015). 

  123. M. Kawahata, "Development of optical visual information system," in Proc. European Electro-Optics Conferences, SPIE (Oct. 1976), Vol. 99, pp. 47-55. 

  124. Y. C. Chung, "FTTH - past, present, and future," Proc. CLEO-PR, plenary talk (Aug, 2015). 

  125. "HKT offers 10-Gbps broadband FTTH in Hong Kong," Lightwave Magazine (Feb. 16, 2015). 

  126. M. Zager, "10 Gigabits: The next frontier," Broadband Communities (Nov./Dec. 2015), pp. 86-89. 

  127. D. Nesset, "PON roadmap," J. Opt. Commun. Netw. 9, A71-A76 (2017). 

  128. U. Holzle, "A ubiquitous cloud requires a transparent network," Proc. OFC, plenary talk (Mar. 2017). 

  129. A. Vahdat, H. Liu, X. Zhao, and C. Johnson, "The Emerging Optical Data Center," Proc. OFC (Mar. 2011), paper OTuH2. 

  130. M. Burgess "Google's next submarine cable will connect Singapore to Australia," Wired (Apr. 6, 2017). 

  131. "Infinera and Seaborn Set Subsea Industry Benchmark for Capacity-Reach with XTS-3300 on Seabras-1," Submarine Cable Networks (Oct. 1, 2017). 

  132. P. Chanclou, A. Pizzinati, F. L. Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. L. Guyader, L. Guillo, Q. Deniel, S. Gosselini, S. D. LE, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O'Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G, Gavioli, and P. Galli, "Optical fiber solution for mobile fronthaul to achieve cloud radio access network," Proc. Future Network & Mobile Summit (July 2013), pp. 1-11. 

  133. V. W. S. Chan, Free-space optical communications J. Lightw. Technol. 24, 4750-4762 (2006). 

  134. X. Zhu and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002). 

  135. D. Thomson, A. Zilkie, J. E Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fedeli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O'Brien, G. Z Mashanovich, and M. Nedeljkovic, "Roadmap on silicon photonics," J. Opt. 18, 073003, 1-20 (2016). 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로