$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Metabolic Engineering of Deinococcus radiodurans for the Production of Phytoene 원문보기

Journal of microbiology and biotechnology, v.28 no.10, 2018년, pp.1691 - 1699  

Jeong, Sun-Wook (School of Environmental Engineering, University of Seoul) ,  Kang, Chang Keun (School of Environmental Engineering, University of Seoul) ,  Choi, Yong Jun (School of Environmental Engineering, University of Seoul)

Abstract AI-Helper 아이콘AI-Helper

A metabolically-engineered Deinococcus radiodurans R1 strain capable of producing phytoene, a colorless $C_{40}$ carotenoid and a promising antioxidant, has been developed. To make this base strain, first, the crtI gene encoding phytoene desaturase was deleted to block the conversion of p...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • In spite of a natural carotenoid-producing strain, the titer is still less than that of previous studies reporting phytoene production using eukaryotic cells [5, 8, 29] and non-natural producers [6, 30]. We hypothesized that this is mainly because of low cell density. Previously, the maximum cell density of D.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Linnewiel-Hermoni K, Khanin M, Danilenko M, Zango G, Amosi Y, Levy J, et al. 2015. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 572: 28-35. 

  2. Kotake-Nara E, Hayashi H, Kotake M, Miyashita K, Nagao A. 2001. Acyclic carotenoids and their oxidation mixtures inhibit the growth of HL-60 human promyelocytic leukemia cells. Nutr. Cancer. 39: 273-283. 

  3. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita, Nagao A. 2001. Carotenoid affect proliferation of human prostate cancer cells. J. Nutr. 131: 3303-3306. 

  4. Melendez-Martinez AJ, Mapelli-Brahm P, Benitez-Gonzalez A, Stinco CM. 2015. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 572: 188-200. 

  5. Srinivasan R, Babu S, Gothandam KM. 2017. Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. Bioresour. Technol. 242: 311-318. 

  6. Fuke T, Sato T, Jha S, Tansengco ML, Atomi H. 2018. Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis. Extremophiles 22: 301-303. 

  7. Barbachano-Torres A, Castelblanco-Matiz LM, Ramos-Valdivia AC, Cerda-Garcia-Rojas CM, Salgado LM, Flores-Ortiz CM, et al. 2014. Analysis of proteomic changes in colored mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Arch. Microbiol. 196: 411-421. 

  8. Pollmann H, Breitenbach J, Sandmann G. 2017. Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene. J. Biotechnol. 247: 34-41. 

  9. Makarova KS, Aravind L, Wolf Y, Tatusov RL, Minton KW, Koonin EV. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79. 

  10. Xu Z, Tian B, Sun Z, Lin J, Hua Y. 2007. Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 153: 1642-1652. 

  11. Yamashiro T, Murata K, Kawai S. 2017. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans. Extremophiles 21: 399-407. 

  12. Dong X, Tian B, Dai S, Li T, Gua L, Tan Z, et al. 2015. Expression of PprI from Deinococcus radiodurans improves lactic acid production and stress tolerance in Lactococcus lactis. PLoS One 10: e0142918. 

  13. Appukuttan D, Sing H, Park SH, Jung JH, Jeong SW, Seo HS, et al. 2015. Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558. Appl. Environ. Microbiol. 82: 1154-1166. 

  14. Jeong SW, Yang JE, Im SH, Choi YJ. 2017. Development of Cre-lox based multiple knockout system in Deinococcus radiodurans R1. Korean J. Chem. Eng. 36: 1-6. 

  15. Liu C, Sun Z, Shen S, Lin L, Li T, Tian B, et al. 2014. Identification and characterization of the geranylgeranyl diphosphate synthase in Deinococcus radiodurans. Lett. Appl. Microbiol. 58: 219-224. 

  16. Tian B, Sun Z, Xu Z, Shen S, Wang H, Hua Y. 2008. Carotenoid 3', 4'-desaturase is involved in carotenoid biosynthesis in the radioresistant bacterium Deinococcus radiodurans. Microbiology 154: 3697-3706. 

  17. Sun Z, Shen S, Wang C, Wang H, Hu Y, Jiao J, et al. 2009. A novel carotenoid 1, 2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus. Microbiology 155: 2775-2783. 

  18. Sun Z, Shen S, Tian B, Wang H, Xu Z, Wang L, et al. 2009. Functional analysis of $\gamma$ -carotene ketolase involved in the carotenoid biosynthesis of Deinococcus radiodurans. FEMS Microbiol. Lett. 301: 21-27. 

  19. Venkateswaran A, McFarlan SC, Ghosal D, Minton KW, Vasilenko A, Makarova K et al. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66: 2620-2626. 

  20. He Y. 2009. High cell density production of Deinococcus radiodurans under optimized conditions. J. Ind. Microbiol. Biotechnol. 36: 539-546. 

  21. Tian B, Xu Z, Sun Z, Lin J, Hua Y. 2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta 1770: 902-911. 

  22. Liu D, Shi J, Ibarra AC, Kakuda Y, Xue SJ. 2008. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and $\beta$ -carotene mixtures on the DPPH free radical. Food Sci. Technol. 41: 1344-1349. 

  23. Matthews PD, Wurtzel ET. 2000. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53: 396-400. 

  24. Rodriguez-Concepcion M, Boronat A. 2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130: 1079-1089. 

  25. Yang J, Guo L. 2014. Biosynthesis of $\beta$ -carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact. 13: 160. 

  26. Kim SW, Keasling JD. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 74: 408-415. 

  27. Zhou Y, Nambou K, Wei L, Cao J, Imanaka T, Hua Q. 2013. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol. Lett. 35: 2137-2145. 

  28. Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S. 2015. Complete biosynthetic pathway of the $C_{50}$ carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J. Bacteriol. 197: 1614-1623. 

  29. Nakayama T, Chichester CO, Lukton A, Mackinney G. 1957. Phytoene production in Phycomyces. Arch. Biochem. Biophys. 66: 310-315. 

  30. Lu CH, Choi JH, Engelmann Moran N, Jin YS, Erdman JW Jr. 2011. Laboratory-scale production of 13C-labeled lycopene and phytoene by bioengineered Escherichia coli. J. Agric. Food Chem. 59: 9996-10005. 

  31. Dose J, Matsugo S, Yokokawa H, Koshida Y, Okazaki S, Seidel U, et al. 2016. Free radical scavenging and cellular antioxidant properties of Astaxanthin. Int. J. Mol. Sci. 17: 103. 

  32. Zaini RG, Brandt K, Clench MR, Le Maitre CL. 2012. Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells. Anticancer Agents Med. Chem. 12: 640-652. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로