$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

에오세 경주 A-형 화강암의 기원: 높은 불소 함량에 대한 고찰
Origin of the Eocene Gyeongju A-type Granite, SE Korea: Implication for the High Fluorine Contents 원문보기

자원환경지질 = Economic and environmental geology, v.51 no.5, 2018년, pp.439 - 453  

명보라 (한국해양과학기술원 심해저광물자원연구센터) ,  김정훈 (경상북도청 환경정책과) ,  우현동 (한국원자력안전기술원 구조.부지평가실) ,  장윤득 (경북대학교 지질학과)

초록
AI-Helper 아이콘AI-Helper

한반도 남동부에 분포하는 에오세 경주 화강암체들은 양산단층과 울산단층을 따라 분포하며, 알칼리장석화강암(AGR), 흑운모화강암(BTGR), 각섬석흑운모화강섬록암으로 분류된다. 지화학적 특성에 따라 이들은 A-형 화강암 (AGR)과 I-형 화강암 (BTGR)로 분류되며, 상부맨틀 내의 같은 모마그마로부터 유래한 것으로 생각된다. AGR의 경우, 유색광물들 (각섬석, 흑운모)이 간극상으로 관찰되는데 이는 AGR 마그마의 결정화 동안 Fluorine (F)이 풍부한 유체가 유입되었을 것으로 생각된다. AGR은 친석원소와 (Sr, Ba 제외) 경희토류원소의 함량이 높으며, 이는 섭입대에서 유래한 유체의 영향으로 생각된다. 에오세 경주 화강암체 중 AGR의 가장 높은 고장력원소 함량과 저어콘포화온도는 마그마 결정분화보다는 부분용융의 영향으로 판단된다. 이들 특징들은 AGR의 높은 F 함량이 섭입슬랩에서 유래한 F이 풍부한 유체와 부분 용융의 영향을 나타내는 것으로 추정할 수 있다. 또한 이러한 결과는 이 연구에서 수행한 희토류원소와 Ba/Th 모델링과도 일치한다. 따라서 이 연구에서는 AGR은 BTGR의 부분용융과 섭입슬랩에서 유래한 F이 풍부한 유체의 유입의 영향이 합쳐져 형성된 것으로 판단하였다.

Abstract AI-Helper 아이콘AI-Helper

The Eocene Gyeongju granitoids in SE Korea are alkali feldspar granite (AGR), biotite granite (BTGR), and hornblende biotite granodiorite (HBGD) along Yangsan fault and Ulsan fault. According to their geochemical characteristics, these granitoids are classified as A-type (AGR) and I-type (BTGR and H...

주제어

표/그림 (14)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this study, we focus on the origin of AGR based on its high F contents. AGR has interstitial hornblende and biotite indicating the implication of F-rich fluid and it is enriched LILE (except Ba and Sr) and LREE induced by subduction-released fluids.

가설 설정

  • 3) The F contents can be accumulated by F-rich fluid derived from subduction slab. AGR was emplaced on the subduction-related environment (i.
본문요약 정보가 도움이 되었나요?

참고문헌 (50)

  1. Agangi, A., Kamenetsky, V.S. and McPhie, J. (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler Range Volcanics, South Australia. Chem Geol., v.273, p.314-325. 

  2. Anderson, I.C., Frost, C.D. and Frost, B.R. (2003) Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Res., v.124, p.243-267. 

  3. Anderson, J.L. (1983) Proterozoic anorogenic granite plutonism of North America. Geological Society of America Memoirs., v.161, p.133-154. 

  4. Arth, J.G. (1976) Behavior of trace elements during magmatic processes: a summary of theoretical models and their applications. J. Res. US Geol. Surv.;(United States). p.4. 

  5. Banno, S., Sakai, C. and Higashino, T. (1986) Pressure-temperature trajectory of the Sanbagawa metamorphism deduced from garnet zoning. Lithos, v.19, p.51-63. 

  6. Bohlen, S.R., Boettcher, A., Wall, V. and Clemens, J. (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contributions to Mineralogy and Petrology, v.83, p.270-277. 

  7. Bonin, B. (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, v.97, p.1-29. 

  8. Bromiley, D.W. and Kohn, S.C. (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. Geochim Cosmochim Ac., v.71, p.124-124. 

  9. Chappell, B.W. and Stephens, W.E. (1988) Origin of infracrustal (I-type) granite magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh., v.79, p.71-86. 

  10. Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REErich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. Journal of Petrology, v.35, p.919-962. 

  11. Cheong, A.C.-S. and Jo, H.J. (2017) Crustal evolution in the Gyeongsang Arc, southeastern Korea: Geochronological, geochemical and Sr-Nd-Hf isotopic constraints from granitoid rocks. American Journal of Science, v.317, p.369-410. 

  12. Chough, S. and Sohn, Y. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth-Science Reviews., v.101, p.225-249. 

  13. Clemens, J.D., Holloway, J.R., and White, A.J.R. (1986) Origin of an A-type granite: experimental constraints. American Mineralogist, v.71, p.317-324. 

  14. Collins, W., Beams, S., White, A. and Chappell, B. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, v.80, p.189-200. 

  15. Creaser, R.A., Price, R.C. and Wormald, R.J. (1991) A-type granites revisited: assessment of a residual-source model. Geology, v.19, p.163-166. 

  16. Delany, J.M. and Helgeson, H.C. (1978) Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and> 800 degrees C. American Journal of Science, v.278, p.638-686. 

  17. Eby, G.N. (1990) The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, p.115-134. 

  18. Eby, G.N. (1992) Chemical Subdivision of the A-Type Granitoids - Petrogenetic and Tectonic Implications. Geology., v.20, p.641-644. 

  19. Edgar, A.D., Pizzolato, L.A. and Sheen, J. (1996) Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Mineral Mag., v.60, p.243-257. 

  20. Ellis, D.J. (1986) Garnet-liquid Fe (super 2+)-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. American Journal of Science, v.286, p.765-791. 

  21. Hsu, L.C. (1968) Selected phase relationships in the system Al-Mn-Fe-Si-OH: A model for garnet equilibria. J Petrol., v.9, p.40-83. 

  22. Hwang, B.H., McWilliams, M., Son, M. and Yang, K. (2007) Tectonic implication of A-type granites across the Yangsan fault, Gigye and Gyeongju areas, Southeast Korean Peninsula. Int. Geol. Rev., v.49, p.1094-1102. 

  23. Imaoka, T., Kiminami, K., Nishida, K., Takemoto, M., Ikawa, T., Itaya, T., Kagami, H. and Iizumi, S. (2011) K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermo-tectonic reactivation. J. Asian Earth Sci., v.40, p.509-533. 

  24. Jiang, Y.H., Ling, H.F., Jiang, S.Y., Fan, H.H., Shen, W.Z. and Ni, P. (2005) Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, southeast China. J. Petrol., v.46, p.1121-1154. 

  25. Kim, C.-S. and Kim, G.-S. (1997) Petrogenesis of the early Tertiary A-type Gyeongju alkali granite in the Kyongsang Basin, Korea. Geosciences Journal., v.1, p.99-107. 

  26. King, P.L., White, A.J.R., Chappell, B.W. and Allen, C.M. (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol., v.38, p.371-391. 

  27. Koh, J., Yun, S. and Lee, S. (1996) Petrology and geochemical characteristics of A-type granite with particular reference to the Gyeongju Granite, Kyeonju. Journal of the Petrological Society of Korea, v.5, p.142-160. (in Korean). 

  28. Kohler, J., Schonenberger, J., Upton, B. and Markl, G. (2009) Halogen and trace-element chemistry in the Gardar Province, South Greenland: Subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos, v.113, p.731-747. 

  29. Landenberger, B. and Collins, W. J. (1996) Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi complex, eastern Australia. J. Petrol., v.37, p.145-170. 

  30. Lee, M. (1995) Mineralogy and geochemistry of the granitic rocks distributed in the Kyeongju area. MS thesis, Seoul National University, Seoul. 

  31. Lee, M.J., Lee, J.I. and Lee, M.S. (1995) Mineralogy and major element geochemistry of A-type alkali granite in the Kyeongju area, Korea. Journal of the Geological Society of Korea, v.31, p.583-607. 

  32. Li, H., Ling, M.-X., Ding, X., Zhang, H., Li, C.-Y., Liu, D.-Y. and Sun, W.-D. (2014) The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China. Lithos, v.200, p.142-156. 

  33. Li, H., Ling, M.-X., Li, C.-Y., Zhang, H., Ding, X., Yang, X.-Y., Fan, W.-M., Li, Y.-L. and Sun, W.-D. (2012) A-type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction. Lithos, v.150, p.26-36. 

  34. Loiselle, M. and Wones, D. (1979) Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, p.468. 

  35. Miller, C.F., McDowell, S.M. and Mapes, R.W. (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, v.31, p.529-532. 

  36. Mushkin, A., Navon, O., Halicz, L., Hartmann, G. and Stein, M. (2003) The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J. Petrol., v.44, p.815-832. 

  37. Nash, W. and Crecraft, H. (1985) Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Ac., v.49, p.2309-2322. 

  38. Patino Douce, A.E. (1997) Generation of metaluminous Atype granites by low-pressure melting of calc-alkaline granitoids. Geology, v.25, p.743-746. 

  39. Pearce, J.A. and Stern, R.J. (2006) Origin of back-arc basin magmas: Trace element and isotope perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, p.63-86. 

  40. Pearce, J.A., Harris, N.B. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v.25, p. 956-983. 

  41. Pearce, J.A., Stern, R.J., Bloomer, S.H. and Fryer, P. (2005) Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem Geophy Geosy, p.6. 

  42. Rudnick, R.L. and Taylor, S.R. (1987) The composition and petrogenesis of the lower crust: a xenolith study. Journal of Geophysical Research: Solid Earth, v.92, p.13981-14005. 

  43. Smith, J., Delaney, J., Hervig, R. and Dawson, J. (1981) Storage of F and Cl in the upper mantle: geochemical implications. Lithos, v.14, p.133-147. 

  44. Sun, S.S. and McDonough, W.S. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, v.42, p.313-345. 

  45. Turner, S.P., Foden, J.D. and Morrison, R.S. (1992) Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma - an Example from the Padthaway Ridge, South Australia. Lithos, v.28, p.151-179. 

  46. Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, v.64, p.295-304. 

  47. Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) Atype granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, v.95, p.407-419. 

  48. Wu, F.Y., Sun, D.Y., Li, H., Jahn, B.M and Wilde, S. (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, v.187, p.143-173. 

  49. Yun, S.H. and Hwang, I.H. (1990) Articles: Petrology and Geochemical Characteristics of the Granitic Rocks in Gyeongju Area, Kyeongju. Journal of the Korean Earth Science Society, v.11, p.51-51. (in Korean with English abstract) 

  50. Zhao, X.F., Zhou, M.F., Li, J.W. and Wu, F.Y. (2008) Association of Neoproterozoic A-and I-type granites in South China: implications for generation of A-type granites in a subduction-related environment. Chemical Geology, v.257, p.1-15. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로