$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3D 프린터용 복합재료 연구 동향
3D Printable Composite Materials: A Review and Prospective 원문보기

Composites research = 복합재료, v.31 no.5, 2018년, pp.192 - 201  

오은영 (Department of Mechanical Engineering, Sungkyunkwan University) ,  이진우 (Department of Polymer Science & Engineering, Sungkyunkwan University) ,  서종환 (Department of Mechanical Engineering, Sungkyunkwan University)

초록
AI-Helper 아이콘AI-Helper

3D 프린팅 기술의 활용은 복잡한 형상의 제품을 보다 손쉽게 생산 가능하게 하며, 시간적 경제적 이점을 제공함으로써 기존 제조업의 형태를 변화시킬 차세대 핵심 제조 기술로 부상하고 있다. 그러나 순수 고분자 소재 출력물의 기계적/전기적 특성 및 기능은 해당 기술의 확산에 있어 한계점으로 작용하였고, 이것은 고성능 고분자 복합재료 개발에 대한 수요로 이어졌다. 이에 본 논문에서는 고성능 3D 프린팅용 고분자 복합재료 개발의 최신 연구 동향을 소개하고, 응용 분야와 가능성 및 향후 연구방향에 대해 논하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of...

주제어

표/그림 (12)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 상기와 같은 다양한 출력 방식에 적합한 복합재료 기술의 동향과 해당 소재의 응용분야 및 가능성에 대해 다룰 것이다. 그리고 현재 기술의 한계와 향후 전 망에 대해 논의하고자 한다.
  • 본 논문에서는 상기와 같은 다양한 출력 방식에 적합한 복합재료 기술의 동향과 해당 소재의 응용분야 및 가능성에 대해 다룰 것이다. 그리고 현재 기술의 한계와 향후 전 망에 대해 논의하고자 한다.
  • 복합재료는 강화재의 형상 및 입자 크기에 따라 마이크로 입자 강화 복합재료와 섬유 강화 복합재료 그리고 나노 강화 복합재료로 크게 나눌 수 있다. 본문에서는 상기와 같은 분류에 따라 각 소재의 특성 및 연구 동향에 대해 소개하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
3D 프린팅 기술은 어느분야에 활용되고 있는가? CAD 등 3D 모델링 소프트웨어로 설계한 입체 모형을 마치 지도의 등고선을 여러 개의 얇은 층으로 분리한 것 같은 평면을 쌓아 올려 입체감 있는 물체를 완성하는 것이 3D 프린팅 기술의 기본 원리이다. 전통적인 제조방식인 절삭 가공대비, 복잡한 형상을 제작하는데 있어 재료의 낭비를 줄일 수 있고, 시간과 비용 등 경제적인 측면에서 자동차, 전자, 항공·우주, 의료와 같은 다양한 산업 분야에서 각광받고 있다. 특히 형상의 제약을 받지 않아 개개인의 신체적 특성 반영이 요구되는 의료 산업에 적합하고, 수요에 따른 주문생산 방식에 적용시 재료 비, 제조 기간, 운송비 등을 절약할 수 있으므로 패션과 산업 디자인 분야 등과 같은 제조업에서 빠르게 수용 및 확산 되고 있는 추세이다[2]. 일반적으로 널리 쓰이는 3D 프린 팅기술에는용융압출적층(FDM, Fused deposition modeling)과 광 조형(SLA, Stereo lithography apparatus), 선택적 레이저 소결(SLS, Selective laser sintering), 3D plotting/direct-write 방식이 있으며, 그 외 기술로는 광경화성 잉크(Photopolymer ink)를 분사한 후 경화시켜 형상을 제조하는 Polyjet, 영사기 광(Project light)에 의한 광중합체(Photopolymer) 전체 표면의 선택적 중합반응에 기초한 디지털 광처리기(DLP, Digital light processing), 휘발성 용매기반 고분자 용액으로부터 직 접적으로 물질층을 첨가하여 증착하는 액체 증착 조형(LDM, Liquid deposition modeling), 그리고 압출된 유동성 고분자 기지재 내에 섬유를 직접 캡슐화하여 첨가하는 섬유 캡슐화 첨가제 제조 방식(FEAM, Fiber encapsulation additive manufacturing) 등 다양한 3D 프린팅 방식이 개발/보급되고 있다[3].
3D 프린팅이란 무엇인가? 3D 프린팅은 적층제조(AM, Additive Manufacturing) 또는 임의 형상 제작(SFF, Solid-freeform fabrication)의 제조방식으로 3차원 모델 데이터를 활용하여 객체를 만들기 위해 재료를 적층하는 프로세스이다[1]. CAD 등 3D 모델링 소프트웨어로 설계한 입체 모형을 마치 지도의 등고선을 여러 개의 얇은 층으로 분리한 것 같은 평면을 쌓아 올려 입체감 있는 물체를 완성하는 것이 3D 프린팅 기술의 기본 원리이다.
3D 프린팅 기술의 기본 원리는 무엇인가? 3D 프린팅은 적층제조(AM, Additive Manufacturing) 또는 임의 형상 제작(SFF, Solid-freeform fabrication)의 제조방식으로 3차원 모델 데이터를 활용하여 객체를 만들기 위해 재료를 적층하는 프로세스이다[1]. CAD 등 3D 모델링 소프트웨어로 설계한 입체 모형을 마치 지도의 등고선을 여러 개의 얇은 층으로 분리한 것 같은 평면을 쌓아 올려 입체감 있는 물체를 완성하는 것이 3D 프린팅 기술의 기본 원리이다. 전통적인 제조방식인 절삭 가공대비, 복잡한 형상을 제작하는데 있어 재료의 낭비를 줄일 수 있고, 시간과 비용 등 경제적인 측면에서 자동차, 전자, 항공·우주, 의료와 같은 다양한 산업 분야에서 각광받고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (68)

  1. Standard A. F2792, Standard Terminology for Additive Manufacturing Technologies. West. 

  2. Choi, J.W., and Kim, H.-C., "3D Printing Technologies - A Review", The Korean Society of Manufacturing Process Engineers, Vol. 14, No. 3, 2015, pp. 1-8. 

  3. Wang, X., Jiang, M., Zhou, Z., et al., "3D Printing of Polymer Matrix Composites: A Review and Prospective", Composites Part B: Engineering, Vol. 110, 2017, pp. 442-458. 

  4. Ge, Q., Dunn, C.K., Qi, H.J., et al., "Active Origami by 4D Printing", Smart Materials and Structures, Vol. 23, No. 9, 2014, pp. 094007. 

  5. Cooperstein, I., Layani, M., and Magdassi, S., "3D Printing of Porous Structures by UV-curable O/W Emulsion for Fabrication of Conductive Objects," Journal of Materials Chemistry C, Vol. 3, No. 9, 2015, pp. 2040-2044. 

  6. Postiglione, G., Natale, G., Griffini, G., et al., "Conductive 3D Microstructures by Direct 3D Printing of Polymer/carbon Nanotube Nanocomposites via Liquid Deposition Modeling", Composites Part A: Applied Science and Manufacturing, Vol. 76, 2015, pp. 110-114. 

  7. Saari, M., Cox, B., Richer, E., et al., "Fiber Encapsulation Additive Manufacturing: An Enabling Technology for 3D Printing of Electromechanical Devices and Robotic Components," 3D Printing and Additive Manufacturing, Vol. 2, No. 1, 2015, pp. 32-39. 

  8. Vert, M., Doi, Y., Hellwich, K.-H, et al., "Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012)", Pure and Applied Chemistry, Vol. 84, No. 2, 2012, pp. 377-410. 

  9. Chung, H., and Das, S., "Processing and Properties of Glass Bead Particulate-filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering", Materials Science and Engineering: A, Vol. 437, No. 2, 2006, pp. 226-234. 

  10. Nikzad, M., Masood, S., and Sbarski, I., "Thermo-mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling," Materials & Design, Vol. 32, No. 6, 2011, pp. 3448-3456. 

  11. Boparai, K., Singh, R., and Singh, H., "Comparison of Tribological Behaviour for Nylon6-Al- $Al_2O_3$ and ABS Parts Fabricated by Fused Deposition Modelling: This Paper Reports a Low Cost Composite Material that is More Wear-resistant than Conventional ABS," Virtual and Physical Prototyping, Vol. 10, No. 2, 2015, pp. 59-66. 

  12. Ahn, S.-H, Montero, M., Odell, D., et al., "Anisotropic Material Properties of Fused Deposition Modeling ABS," Rapid Prototyping Journal, Vol. 8, No. 4, 2002, pp. 248-257. 

  13. Torrado, A.R., Shemelya, C.M., English, J.D., et al., "Characterizing the Effect of Additives to ABS on the Mechanical Property Anisotropy of Specimens Fabricated by Material Extrusion 3D Printing", Additive Manufacturing, Vol. 6, 2015, 16-29. 

  14. Kokkinis, D., Schaffner, M., Studart, A.R., "Multimaterial Magnetically Assisted 3D Printing of Composite Materials", Nature communications, Vol. 6, 2015, pp. 8643. 

  15. Isakov, D., Lei, Q., Castles, F., et al., "3D Printed Anisotropic Dielectric Composite with Meta-material Features," Materials & Design, Vol. 93, 2016, pp. 423-430. 

  16. Kurimoto, M., Yamashita, Y., Ozaki, H., et al., editors., "3D Printing of Conical Insulating Spacer Using Alumina/UVcured-resin Composite", Electrical Insulation and Dielectric Phenomena (CEIDP), 2015 IEEE Conference on, 2015, IEEE. 

  17. Shemelya, C.M., Rivera, A,, Perez, A.T., et al., "Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-polycarbonate Polymer Matrix Composite for Space-based Applications," Journal of Electronic Materials, Vol. 44, No. 8, 2015, pp. 2598-2607. 

  18. Castles, F., Isakov, D., Lui, A., et al., "Microwave Dielectric Characterisation of 3D-printed $BaTiO_3$ /ABS Polymer Composites. Scientific Reports", Vol. 6, 2016, pp. 22714. 

  19. Hwang, S., Reyes, E.I., Moon, K.-S., et al., "Thermo-mechanical Characterization of Metal/polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process," Journal of Electronic Materials, Vol. 44, No. 3, 2015, pp. 771-777. 

  20. Kalsoom, U., Peristyy, A., Nesterenko, P., et al., "A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices," RSC Advances, Vol. 6, No. 44, 2016, pp. 38140-38147. 

  21. Zubrowska, A., Masirek, R., Piorkowska, E., et al., "Structure, Thermal and Mechanical Properties of Polypropylene Composites with Nano-and Micro-diamonds," Polimery, Vol. 60, No. 5, 2015, pp. 331-336. 

  22. Lee, D.W., Kim, C.U., Byun, J.H. et al., "Optimization of Fiber Ratio in Laminated Composites for Development of Threedimensional Preform T-beam Structure," Composites Research, Vol. 30, No. 5, 2017, pp. 297-302. 

  23. Uhlmann, E., Sammler, F., Richarz, S., et al., "Machining of Carbon Fibre Reinforced Plastics," Procedia CIRP Vol. 24, 2014, pp. 19-24. 

  24. Fu, S.-Y., and Lauke, B., "Effects of Fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-fiberreinforced Polymers," Composites Science and Technology, Vol. 56, No. 10, 1996, pp. 1179-1190. 

  25. Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., et al., "Highly Oriented Carbon Fiber-polymer Composites via Additive Manufacturing," Composites Science and Technology, Vol. 105, 2014, pp. 144-150. 

  26. Ning, F., Cong, W., Hu, Y., et al., "Additive Manufacturing of Carbon Fiber-reinforced Plastic Composites Using Fused Deposition Modeling: Effects of Process Parameters on Tensile Properties," Journal of Composite Materials, Vol. 51, No. 4, 2017, pp. 451-462. 

  27. Tian, X., Liu, T., Yang, C., et al., "Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites," Composites Part A: Applied Science and Manufacturing, Vol. 88, 2016, pp. 198-205. 

  28. Chen, Q., Boisse, P., Park, C.H., et al., "Intra/inter-ply Shear Behaviors of Continuous Fiber Reinforced Thermoplastic Composites in Thermoforming Processes," Composite Structures, Vol. 93, No. 7, 2011, pp. 1692-1703. 

  29. Sun, K., Wei, T.S., Ahn, B.Y., et al., "3D Printing of Interdigitated Li­Ion Microbattery Architectures," Advanced Materials, Vol. 25, No, Vol. 33, 2013, pp. 4539-4543. 

  30. Love, L.J., Kunc, V., Rios, O., et al., "The Importance of Carbon Fiber to Polymer Additive Manufacturing," Journal of Materials Research, Vol. 29, No. 17, 2014, pp. 1893-1898. 

  31. Namiki, M., Ueda, M., Todoroki, A., Hirano, Y., and Matsuzaki, R., "3D Printing of Continuous Fiber Reinforced Plastic," Proc Soc Adv Mater Process Eng 2014. 

  32. Matsuzaki, R., Ueda, M., Namiki, M., et al., "Three-dimensional Printing of Continuous-fiber Composites by In-nozzle Impregnation," Scientific Reports, Vol. 6, 2016, pp. 23058. 

  33. Van Der Klift, F., Koga, Y., Todoroki, A., et al., "3D Printing of Continuous Carbon Fibre Reinforced Thermo-plastic (CFRTP) Tensile Test Specimens," Open Journal of Composite Materials, Vol. 6, No. 1, 2015, pp. 18. 

  34. Lu, H., Liang, F., Yao, Y., et al., "Self-assembled Multi-layered Carbon Nanofiber Nanopaper for Significantly Improving Electrical Actuation of Shape Memory Polymer Nanocomposite," Composites Part B: Engineering, Vol. 59, 2014, pp. 191-195. 

  35. Lu, H., Huang, W.M., and Leng, J., "Functionally Graded and Self-assembled Carbon Nanofiber and Boron Nitride in Nanopaper for Electrical Actuation of Shape Memory Nanocomposites," Composites Part B: Engineering, Vol. 62, 2014, pp. 1-4. 

  36. Lu, H., Yao, Y., Huang, W.M., Leng, J., and Hui, D., "Significantly Improving Infrared Lightinduced Shape Recovery Behavior of Shape Memory Polymeric Nanocomposite via a Synergistic Effect of Carbon Nanotube and Boron Nitride," Compos Part B Eng., Vol. 62, 2014, 256e61. 

  37. Ge, Q., Qi, H.J., and Dunn, M.L., "Active Materials by Fourdimension Printing," Applied Physics Letters, Vol. 103, No. 13, 2013, 131901. 

  38. Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., et al., "Biomimetic 4D Printing," Nature Materials, Vol. 15, No. 4, 2016, pp. 413. 

  39. Zhong, W., Li, F., Zhang, Z., et al., "Short Fiber Reinforced Composites for Fused Deposition Modeling," Materials Science and Engineering: A, Vol. 301, No. 2, 2001, pp. 125-130. 

  40. Compton, B.G., and Lewis, J.A., "3D­printing of Lightweight Cellular Composites," Advanced Materials, Vol. 26, No. 34, 2014, pp. 5930-5935. 

  41. Yan, X., Gu, J., Zheng, G., et al., "Lowly Loaded Carbon Nanotubes Induced High Electrical Conductivity and Giant Magnetoresistance in Ethylene/1-octene Copolymers," Polymer, Vol. 103, 2016, pp. 315-327. 

  42. Gu, J., Xie, C., Li, H., et al., "Thermal Percolation Behavior of Graphene Nanoplatelets/polyphenylene Sulfide Thermal Conductivity Composites," Polymer Composites, Vol. 35, No. 6, 2014, pp. 1087-1092. 

  43. Gu, J., Liang, C., Dang, J., et al., "Ideal Dielectric Thermally Conductive Bismaleimide Nanocomposites Filled with Polyhedral Oligomeric Silsesquioxane Functionalized Nanosized Boron Nitride," RSC Advances, Vol. 6, No. 42, 2016, pp. 35809-35814. 

  44. Fei Liang, J.S., Wang Xin, Xu Yunjun, et al., "Polyurethane Nanocomposites Coatings with Enhanced Mechanical and Thermal Properties," Orlando, FL: CAMX, 2014. 

  45. Zhan, H., Cheng, F., Chen, Y., et al., "Transfer Printing for Preparing Nanostructured PDMS Film as Flexible SERS Active Substrate", Composites Part B: Engineering, Vol. 84, 2016, pp. 222-227. 

  46. Yoo, M.H., J. H. S., Lee, M.G., et al., "Development of CNTPolymer Composite Filament for 3D Printer", Korean Society of Manufacturing Technology Engineers, 2016, 1. 

  47. Lin, D., Jin, S., Zhang, F., et al., "3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures," Nanotechnology, Vol. 26, No. 43, 2015, pp. 434003. 

  48. Guo, S.-Z., Yang, X., Heuzey, M.-C., et al., "3D Printing of a Multifunctional Nanocomposite Helical Liquid Sensor," Nanoscale, Vol. 7, No. 15, 2015, pp. 6451-6456. 

  49. Wei, X., Li, D., Jiang, W., et al., "3D Printable Graphene Composite," Scientific Reports, Vol. 5, 2015, pp. 11181. 

  50. Dul, S., Fambri, L., and Pegoretti, A., "Fused Deposition Modelling with ABS-graphene Nanocomposites," Composites Part A: Applied Science and Manufacturing, Vol. 85, 2016, pp. 181-191. 

  51. Weng, Z., Wang, J., Senthil, T., et al., "Mechanical and Thermal Properties of ABS/montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing," Materials & Design, Vol. 102, 2016, pp. 276-283. 

  52. Yugang, D., Yuan, Z., Yiping, T., et al., "Nano- $TiO_2$ -modified Photosensitive Resin for RP," Rapid Prototyping Journal, Vol. 17, No. 4, 2011, pp. 247-252. 

  53. He, M., Zhao, Y., Wang, B., et al., "3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity", Small, Vol. 11, No. 44, 2015, pp. 5889-5894. 

  54. Sandoval, J., Soto, K., Murr, L., et al., "Nanotailoring Photocrosslinkable Epoxy Resins with Multi-walled Carbon Nanotubes for Stereolithography Layered Manufacturing," Journal of Materials Science, Vol. 42, No. 1, 2007, pp. 156-165. 

  55. Hector Sandoval, J., and Wicker, R.B., "Functionalizing Stereolithography Resins: Effects of Dispersed Multi-walled Carbon Nanotubes on Physical Properties," Rapid Prototyping Journal, Vol. 12, No. 5, 2006, pp. 292-303. 

  56. Zhang, Y., Li, H., Yang, X., et al., "Additive Manufacturing of Carbon Nanotube­photopolymer Composite Radar Absorbing Materials," Polymer Composites, Vol. 39, No. S2, 2018, pp. E671-E676. 

  57. Kim, K., Zhu, W., Qu, X., et al., "3D Optical Printing of Piezoelectric Nanoparticle-polymer Composite Materials," ACS Nano, Vol. 8, No. 10, 2014, pp. 9799-9806. 

  58. Gonzalez, G., Chiappone, A., Roppolo, I., et al., "Development of 3D Printable Formulations Containing CNT with Enhanced Electrical Properties," Polymer, Vol. 109, 2017, pp. 246-253. 

  59. Li, Z., Wang, Z., Gan, X., et al., "Selective Laser Sintering 3D Printing: A Way to Construct 3d Electrically Conductive Segregated Network in Polymer Matrix," Macromolecular Materials and Engineering, Vol. 302, No. 11, 2017, pp. 1700211. 

  60. Athreya, S.R., Kalaitzidou, K., Das, S., "Processing and Characterization of a Carbon Black-filled Electrically Conductive Nylon-12 Nanocomposite Produced by Selective Laser Sintering," Materials Science and Engineering: A, Vol. 527, No. 10-11, 2010, pp. 2637-2642. 

  61. Kim, H.C., Hahn, H.T., and Yang, Y.S., "Synthesis of PA12/functionalized GNP Nanocomposite Powders for the Selective Laser Sintering Process," Journal of Composite Materials, Vol. 47, No. 4, 2013, pp. 501-509. 

  62. Shofner, M., Lozano, K., Rodriguez­Macias, F., et al., "Nanofiber-reinforced Polymers Prepared by Fused Deposition Modeling," Journal of Applied Polymer Science, Vol. 89, No. 11, 2003, pp. 3081-3090. 

  63. Tsiakatouras, G., Tsellou, E., and Stergiou, C., "Comparative Study on Nanotubes Reinforced with Carbon Filaments for the 3D Printing of Mechanical Parts," World Transactions on Engineering and Technology Education, Vol. 12, No. 3, 2014, pp. 392-396. 

  64. Gnanasekaran, K., Heijmans, T., van Bennekom, S., et al., "3D printing of CNT-and Graphene-based Conductive Polymer Nanocomposites by Fused Deposition Modeling," Applied Materials Today, Vol. 9, 2017, pp. 21-28. 

  65. Rymansaib, Z., Iravani, P., Emslie, E., et al., "All­Polystyrene 3D­Printed Electrochemical Device with Embedded Carbon Nanofiber­Graphite­Polystyrene Composite Conductor," Electroanalysis, Vol. 28, No. 7, pp. 1517-1523. 

  66. Park, S.H., "3D Printing Industry Trend Analysis and R&D Policy Research," Korea Institute of Science and Technology Information, Vol. 24, No. 3/4, 2014, pp. 93-104. 

  67. Wohelers Report 2017, [online] Available at, http, //www.cadalyst.com/hardware/3d-printers/wohlers-report-finds-sloweroverall-growth-more-competition-3d-printing-space-3Statista2018. 

  68. [online] Available at: https://www.statista.com/statistics/739182/worldwide-survey-3d-printing-applications 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로