최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.60 no.6, 2018년, pp.43 - 54
최용훈 (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) , 김민영 (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) , 수잔 오샤네시 (Conservation and Production Research Laboratory, USDA Agricultural Research Service (USDA-ARS)) , 전종길 (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) , 김영진 (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) , 송원정 (Sangju Agricultural Technology Center)
The accurate estimation of reference crop evapotranspiration (
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Allen, R. G., M. Smith, A. Perrier, and L. S. Pereira, 1994. An update for the definition of reference evapotranspiration. ICID Bull 43(2): 1-92.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, No 5 6 , FAO, Rome.
Allen, R. G. and Food and Agriculture Organization of the United Nations (FAO), 1998. Crop evapotranspiration: guidelines for computing crop water requirements, 56-57, Food and Agricultural Organization of the United Nations, P. 300.
American Society of Civil Engineers (ASCE), 2000. Standardization of Reference Evapotranspiration Task Committee, 2000.
Antonopoulos, V. Z. and A. V. Antonopoulos, 2017. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comp. Electron. Agric. 132: 86-96. doi:10.1016/j.compag.2016.11.011
Aytek, A., A. Guven, M. I. Yuce, and H. Aksoy, 2009. Reply to discussion of "an explicit neural network formulation for evapotranspiration". Hydrological Sciences Journal 54(2): 389-393. doi:10.1623/hysj.54.2.389.
Azadeh, A., K. D. Shoushtari, M. Saberi, and E. Teimoury, 2013. An integrated artificial neural network and system dynamics approach in support of the viable system model to enhance industrial intelligence: the case of a large broiler industry. Systems Research and Behavior Science 31(2): 236-257. doi:10.1002/sres.2199.
Basheer I. A. and M. Hajmeer, 2000. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1): 3-31.
Basu, J. K., D. Bhattacharyya, and T. H. Kim, 2010. Use of artificial neural network in pattern recognition. International Journal of Software Engineering and its Applications 4(2): 23-43.
Dawson, C. W. and R. Wilby, 1998. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal 43: 47-66. doi:10.1080/02626669809492102
De Medeiros, F. J., C. M. e Silva, and B. G. Bezerra, 2017. Calibration of Angstrom-Prescott equation to estimate daily solar radiation on Rio Grande do Norte State, Brazil. Revista Brasileira de Meteorologia 32(3): 409-461.
Dogan, E., 2009. Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems. Irrigation And Drainage 58: 617-628. doi:10.1002/ird.445
Igbadum H. E, H. F. Mahoo, A. Tarimo, and B. A. Salim, 2006. Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of Great Ruaha River Basin, Tanzania. Agricultural Water Management 85: 141-150. doi:10.1016/j.agwat.2006.04.003
Food and Agriculture Organization of the United Nations (FAO), 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. Rome, Italy.
Kaastra, I. and M. Boyd, 1996. Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3): 215-236.
Kahane, L. H., 2008. Regression Basics, 2nd Ed. SAGE Publications Inc., Los Angeles, U.S.A.
Kecman, V., 2001. Learning and soft computing: Support vector machines, neural networks, and fuzzy logic model.
Kim, M., J. McGhee, S. Lee, and J. Thurston, 2011. Comparative prediction schemes using conventional and advanced statistical analysis to predict microbial water quality in runoff form manured fields. Journal of Environmental Science and Health, Part A 46: 1392-1400.
Kim, M., C. Y. Choi, and C. P. Gerba, 2008. Source tracking of microbial intrusion in water system using artificial neural networks. Water Research 42(4-5): 1308-1314. doi:10.1016/j.watres.2007.09.032
Kisi, O., 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 50(4): 683-696.
Koivo, H. N., 1994. Artificial neural networks in fault diagnosis and control. Control Engineering Practice 2(1): 89-101.
Kumar, M., N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O. Pruitt, 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering ASCE 128(4): 224-233. doi:10.1061/-ASCE!0733-9437-2002!128:4-224!
Jain, S. K., A. Sarkar, and V. Garg, 2008. Impact of declining trend of flow on Harike Wetland, India. Water Resources Management 22(4): 409-421.
Jun, W., X. Wang, M. Guo, and X. Xu, 2012, Impact of climate change on reference crop evapotranspiration in Chuxiong City, Yunnan Province. Procedia Earth and Planetary Science 5: 113-119.
Landeras, G., A. Ortiz-Barredo, and J. J. Lopez, 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management 95(5): 553-565.
Lang, D., J. Zheng, J. Shi, F. Liao, X. Ma, W. Wang, X. Chen, and M. Zhang, 2017. The comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith method in Southwestern China. Water 9(734): 1-18.
Liu, S. and Z. Xu, 2017. Micrometeorological methods to determine evapotranspiration. Observation and Measurement 1-39.
Liu, X., X. J. Zhang, Q. Tang, and X. Z. Zhang, 2014. Effects of surface wind speed decline on modeled hydrological conditions in China. Hydrology and Earth System Sciences 18(8): 2803-2813.
Maier, H. R. and G. C. Dandy, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling & Software 15: 101-124.
Mia, M. M. A., S. K. Biswas, M. C. Urmi, and A. Siddique, 2015. An algorithm for training multilayer perceptron (MLP) for image reconstruction using neural network without overfitting. International Journal of Scientific & Technology Research 4(2): 271-275.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, and R. D. Harmel, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50: 885-900.
Nash, J. E. and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology 10(3): 282-290.
NeuralWare, 1993. NeuralWorks Professional II/Plus: Reference Guide, NeuralWare, Inc., Pittsburgh, PA, USA.
Ortiz-Rodriguez, J., M. Martinez-Blanco, J. Cervantes-Viramontes, and H. Vega-Carrillo, 2013. Robust design of artificial neural networks methodology in neutron spectrometry, In: K. Suzuki, ed. Artificial Neural Networks - Architectures and Applications, s.l.: InTech, pp. 83-111.
Rudd, K., G. Di Muro, and S. Ferrari, 2014. A constrained backpropagation approach for the adoptive solution of partial differential equations. IEEE Transactions on Neural Networks and Learning Systems 25(3): 571-584.
Sahoo, G. B. and C. Ray, 2006. Flow forecasting for a Hawaii stream using rating curves and neural networks. Journal of Hydrology 317(1): 63-80.
Singh, V. P., 1988. Hydrology system rainfall-runoff modeling, vol. 1. Prentice Hall, Englewood Cliffs, New Jersey, USA.
Specht, D. F., 1991. A general regression neural network. IEEE Transactions on Neural Networks 2(6): 568-576.
Traore, S., Y. M. Wang, and T. Kerh, 2008. Modeling reference evapotranspiration by generalized regression neural network in semiarid zone of Africa. WSEAS Transactions on Information Science and Applications 5(6): 991-1000.
Xu, C. Y. and V. P. Singh, 2000. Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological Processes 14: 339-349.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.