$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

양자컴퓨팅 기술 연구개발 동향
R&D Status of Quantum Computing Technology 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.33 no.1, 2018년, pp.20 - 33  

백충헌 (양자창의연구실) ,  황용수 (양자창의연구실) ,  김태완 (양자창의연구실) ,  최병수 (양자창의연구실)

Abstract AI-Helper 아이콘AI-Helper

The calculation speed of quantum computing is expected to outperform that of existing supercomputers with regard to certain problems such as secure computing, optimization problems, searching, and quantum chemistry. Many companies such as Google and IBM have been trying to make 50 superconducting qu...

참고문헌 (47)

  1. R.P. Feynman, "Simulating Physics with Computers," Int. J. Theoretical Phys., June 1982, vol. 21, no. 6-7, pp. 467-488. 

  2. P.W. Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring," Proc. Annu. Symp. Found. Comput. Sci., Santa Fe, NM, USA, Nov. 1994, pp. 124-134. 

  3. L.K. Grover, "A fast Quantum Mechanical Algorithms for Database Search," Proc. Annu. ACM. Symp. Theory Comput., Philadelphia, PA, USA, May 22-24, 1996, pp. 212-219. 

  4. P.J.J. O'Malley et al., "Scalable Quantum Simulation of Molecular Energies," Phys. Rev. X, vol. 6, July 2016, Article no. 031007. 

  5. A. Kandala et al., "Hardware-Efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets," Nature, vol. 549, 2017, pp. 242-246. 

  6. Forschungszentrum Julich, Accessed Jan. 2018. http://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/_node.html 

  7. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge, UK: Cambridge Univ. Press, 2000. 

  8. B. Omer, "A procedural formalism for quantum computing," Master's thesis, Department of Theoretical Physics, Technical University of Vienna, 1998. 

  9. J.W. Sanders and P. Zuliani, "Quantum Programming," In Mathematics of Program Construction, New York, USA: Springer, 2000, pp. 80-99. 

  10. S. Bettelli, T. Calarco, and L. Serafini, "Toward an Architecture for Quantum Programming," Eur. Phys. J. D-Atomic, Molecular, Opt. Plasma Phys., vol. 25, no. 2, 2003, pp. 181-200. 

  11. A.S. Green et al., "Quipper: a Scalable Quantum Programming Language," Proc. ACM SIGPLAN Conf. Programming Language Des. Implementation, Seattle, WA, USA, June 2013, pp. 333-342. 

  12. A. JavadiAbhari et al., "ScaffCC: a Framework for Compilation and Analysis of Quantum Computing Programs," Proc. ACM Conf. Comput. Frontiers, Cagliari, Italy, May 2014, Article no. 1. 

  13. QuTech, Accessed Jan. 2018. https://qutech.nl/qxquantum-computer-simulator/ 

  14. Google Research Blog, Accessed Jan. 2018. https://research.googleblog.com/2017/10/announcing-openfermionopen-source.html 

  15. Microsoft, Accessed Jan. 2018. https://www.microsoft.com/enus/research/project/language-integrated-quantum-operations-liqui 

  16. Microsoft Quantum, Accessed Jan. 2018. https://cloudblogs.microsoft.com/quantum/2017/12/11/announcing-microsoft-quantum-development-kit/ 

  17. P. Shor, "Scheme for Reducing Decoherence in Quantum Computer Memory," Phys. Rev. A, vol. 52, Oct. 1995, Article no. R2493. 

  18. P. Shor, "Fault-Tolerant Quantum Computation," Symp. Found. Comput., Burlington, VT, USA, 1996. 

  19. A.R. Calderbank and P. Shor, "Good Quantum Error-Correcting Codes Exist," Phys. Rev. A, vol. 54, no. 2, 1996, pp. 1098-1105. 

  20. A. Steane, "Multiple-Particle Interference and Quantum Error Correction," Proc. Royal Soc. A, vol. 452, no. 1954, Nov. 1996, pp. 2551-2577. 

  21. D. Gottesman, "Class of Quantum Error-Correcting Codes Saturating the Quantum Hamming Bound," Phys. Rev. A, vol. 54, no. 3, Sept. 1996, pp. 1862-1868. 

  22. D. Bacon, "Operator quantum Error-Correcting Subsystems for Self-Correcting Quantum Memories," Phys. Rev. A, vol. 73, 1996, Article no. 012340. 

  23. M.-H. Hsieh et al., "General entanglement-Assisted Quantum Error-Correcting Codes," Phys. Rev. A, vol. 76, 2007, Article no. 062313. 

  24. A.Y. Kitaev, "Fault-Tolerant Quantum Computation by Anyons," Ann. Phys., vol. 303, no. 1, Jan. 2004, pp. 2-30. 

  25. D.S. Wang et al., "Surface Code Quantum Computing with Error Rates Over 1%," Phys. Rev. A, vol. 83, Feb. 2001, Article no. 020302(R). 

  26. M. Oskin et al., "Building Quantum Wires: The Long and the Short of It," Annu. ISCA, San Diego, CA, USA, June 2003, 374-385. 

  27. M. Pedram and A. Shafaei, "Layout Optimization for Quantum Circuits with Linear Nearest Neighbor Architectures," IEEE Circuits Syst. Mag., vol. 16, no. 22016, pp. 62-74. 

  28. A. Shafaei et al., "Optimization of Quantum Circuits for Interaction Distance in Linear Nearest Neighbor Architectures," Des. Automation Conf., Austin, TX, USA, 2013, pp. 1-6. 

  29. K.M. Svore et al., "Local Fault-Tolerant Quantum Computation," Phys. Rev. A, vol. 72, Aug. 2005, Article no. 022317. 

  30. K.M. Svore et al., "Noise Threshold for a Fault-Tolerant Two-Dimensional Lattice Architecture," Quantum Inform. Comput., vol. 7, no. 4, May 2007, pp. 297-318. 

  31. D. Lidar and T. Brun, Quantum Error Correction, Cambridge, UK: Cambridge Univ. Press, 2013. 

  32. H. Corrigan-Gibbs. D.J. Wu. and D. Boneh, "Quantum Operating Systems," Proc. HotOS, Whistler, Canada, May 2017, pp. 76-81. 

  33. B. Lekitsch et al., "Blueprint for a Microwave Trapped Ion Quantum Computer," Sci. Adv., vol. 3, no. 2, Feb. 2017, Article no. e1601540. 

  34. A. Paler et al., Online Scheduled Execution of Quantum Circuits Protected by Surface Codes, Nov. 2017, Accessed Jan. 2018. https://arxiv.org/abs/1711.01385 

  35. R. Versluis et al., "Scalable Quantum Circuit and Control for a Superconducting Surface Code," Phys. Rev. Appl., vol. 8, Sept. 2017, Article no. 034021. 

  36. R. Van Meter and C. Horsman, "A Blueprint for Building a Quantum Computer," Commun. ACM, vol. 56, no. 10, 2017, pp. 84-93. 

  37. Github QISKIT, Accessed Jan. 2018. https://github.com/IBM/qiskit-openqasm 

  38. T.D. Ladd et al., "Quantum Computers," Nature, vol. 464, Mar. 2010, pp. 45-53. 

  39. S. Debnath et al., "Demonstration of a Small Programmable Quantum Computer with Atomic Qubits," Nature, vol. 536, Aug. 2016, pp. 63-66. 

  40. J. Kelly et al., "State Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit," Nature, vol. 519, Mar. 2015, pp. 66-69. 

  41. IBM Quantum Experience, Accessed Jan. 2018. https://quantumexperience.ng.bluemix.net/qx 

  42. C. Vu, IBM Announces Advances to IBM Quantum Systems & Ecosystem, Accessed Jan. 2018. http://www-03.ibm.com/press/us/en/pressrelease/53374.wss 

  43. T.P. Harty et al., "High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit," Phys. Rev. Lett., vol. 113, Nov. 2014, Article no. 220501. 

  44. M. Veldhorst et al., "A two-qubit logic gate in silicon," Nature, vol. 526, Oct. 2015, pp. 410-414. 

  45. R. Barends et al., "Superconducting Quantum Circuits at the Surface Code Threshold for Fault Tolerance." Nature, vol. 508, Apr. 2014, pp. 500-503. 

  46. J.M. Nichol et al., "High-Fidelity Entangling Gate for Double-Quantum-Dot Spin Qubits," npj Quantum Inform., vol. 3, Jan. 2017, Article no. 3. 

  47. A. Reiserer et al., "Robust Quantum-Network Memory Using Decoherence-Protected Subspaces of Nuclear Spins," Phys. Rev. X, vol. 6, 2016, Article no. 21040. 

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로